Advertisement

The Mössbauer Effect: A New Method for Measuring Diffusion

  • J. G. Mullen
  • R. C. Knauer

Abstract

We have been able to directly observe atomic diffusion in solids by observing the broadening of the Mössbauer line. There appears to be some advantage to the technique over the more common tracer-sectioning technique for measuring diffusion. In addition to the fact that the technique does not require the destruction of the sample, thereby permitting the measurement of the temperature dependence of the diffusivity with a single specimen, it may afford more accurate results for very rapidly diffusing ions. It also may give a direct handle on the Bardeen-Herring correlation factor, particularly in the cases where the diffusing ion undergoes a very highly correlated motion through the lattice, as is expected for vacancy diffusion of impurities, where the binding energy between the impurity and the vacancy is very large. Our data indicate that the temperature dependence of the broadening of the Mössbauer line follows an Arrhenius relation, with a slope parallel to the classical diffusivity for cases which are not highly correlated. In the cases so far studied the broadening is only half of the earlier theoretically predicted value, and the significance of this point is discussed. A novel furnace assembly used for hot-source and hot-absorber experiments under 1100°C is given.

Keywords

Boron Nitride Measuring Diffusion Mossbauer Spectrum Vacancy Mechanism Iron Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Singwi and A. Sjölander, Phys. Rev. 120:1093 (1960).CrossRefGoogle Scholar
  2. 2.
    J. G. Mullen, Phys. Rev. 121:1649 (1961).CrossRefGoogle Scholar
  3. 3.
    C. A. Mackliet, Phys. Rev. 109:1964 (1958).CrossRefGoogle Scholar
  4. 4.
    D. Duhl, K. Hirano, and M. Cohen, Acta Met. 11:1 (1963).CrossRefGoogle Scholar
  5. 5.
    C. J. Smithells, Metals Reference Book (Butterworth and Co., London, 1962), Vol. II, 3rd ed.Google Scholar
  6. 6.
    C. T. Tomizuka and L. O. Slifkin, Phys. Rev. 96:610 (1954).CrossRefGoogle Scholar
  7. 7.
    R. C. Knauer and J. G. Mullen, Phys. Rev. 174:711 (1968).CrossRefGoogle Scholar
  8. 8.
    R. C. Knauer and J. G. Mullen, Appl. Phys. Letters 13:150 (1968).CrossRefGoogle Scholar
  9. 9.
    H. B. Huntington and F. Seitz, Phys. Rev. 61:315 (1942);CrossRefGoogle Scholar
  10. 9a.
    H. B. Huntington and F. Seitz, Phys. Rev. 76:1728 (1949).CrossRefGoogle Scholar
  11. 10.
    W. A. Steyert and R. D. Taylor, Phys. Rev. 134:A716 (1964).CrossRefGoogle Scholar
  12. 11.
    H.A. Rahman, K. S. Singwi, A. Sjölander, Phys. Rev. 126:986 (1962);CrossRefGoogle Scholar
  13. 11a.
    H.A. Rahman, K. S. Singwi, A. Sjölander, 126:997 (1962).CrossRefGoogle Scholar
  14. 12.
    F. J. Lynch, R. E. Holland, and M. Hamermesh, Phys. Rev. 120:513 (1960).CrossRefGoogle Scholar
  15. 13.
    R. C. Knauer, Ph.D. Thesis, Purdue University, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • J. G. Mullen
    • 1
  • R. C. Knauer
    • 1
  1. 1.Physics DepartmentPurdue UniversityLafayetteUSA

Personalised recommendations