Aftereffects of Auger Ionization Following Electron Capture in Cobalt Complexes

  • A. Nath
  • M. P. Klein
  • W. Kündig
  • D. Lichtenstein


Several cobalt complexes labeled with Co57 were studied. In complexes, where cobalt is held in a large and highly conjugated ring system, it is shown that the bonds escape fragmentation after the Auger event. On the other hand, in some complexes with nonconjugated structures, there is evidence for complete fragmentation. In the intermediate category of complexes, there exists a certain probability for the molecule to escape fragmentation. Attempts have been made to distinguish between the two possibilities—failure to fragment versus fragmentation followed by reentry of57Fen+ into a neighboring molecule through excited exchange within 10-7 sec. This has been done by investigating the spectra of labeled complexes diluted in inert matrices and inactive cobalt complexes doped with 57Co++.

The absence of fragmentation in highly conjugated ring systems opens up interesting possibilities for the use of Mössbauer emission spectroscopy for systematic study of Vitamin B12, its analogs, and other biologically important molecules possessing conjugated ring systems, for instance, porphyrins. It can also find applications in the study of bulky iron-bearing molecules where iron can be replaced by cobalt; in such cases, the emission Mössbauer spectroscopy would be decidedly more sensitive than the conventional absorption Mössbauer spectroscopy.


Cobalt Complex Outer Line Auger Event Excited Exchange Quadrupolar Split Doublet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Pollak, Phys. Stat. Sol. 2:720 (1962).CrossRefGoogle Scholar
  2. 2.
    S. Wexler, in: Actions Chemiques et Biologiques des Radiations, M. Haissinsky, ed. (Masson, Paris, 1965), Vol. 8, pp. 103–241.Google Scholar
  3. 3.
    A. H. Snell, α, ß, and γ-Spectroscopy, K. Siegbahn, ed. (Interscience, New York, 1964), p. 1545.Google Scholar
  4. 4.
    A. R. Kazanjian and W. F. Libby, J. Chem. Phys. 42:211S (1965).CrossRefGoogle Scholar
  5. 5.
    P. R. Geissler and J. E. Willard, J. Phys. Chem. 67:1675 (1963).CrossRefGoogle Scholar
  6. 6.
    G. K. Wertheim, W. R. Kingston, and R. H. Herber, J. Chem. Phys. 37:687 (1962).CrossRefGoogle Scholar
  7. 7.
    L. M. Epstein, J. Chem. Phys. 36:2731 (1962).CrossRefGoogle Scholar
  8. 8.
    J. J. Spijkerman, L. H. Hall, and J. L. Lambert, J. Am. Chem. Soc. 90:2039 (1968).CrossRefGoogle Scholar
  9. 9.
    R. H. Herber, R. B. King, and G. K. Wertheim, Inorg. Chem. 3:101 (1964).CrossRefGoogle Scholar
  10. 10.
    G. K. Wertheim and R. H. Herber, J. Chem. Phys. 38:2106 (1963).CrossRefGoogle Scholar
  11. 11.
    G. M. Bancroft, A. G. Maddock, W. K. Ong, R. H. Prince, and A. J. Stone, J. Chem. Soc. A, p. 1966 (1967).Google Scholar
  12. 12.
    J. W. G. Wignall, J. Chem. Phys. 44:2462 (1966).CrossRefGoogle Scholar
  13. 13.
    J. Shankar, Amar Nath, and M. H. Rao, Radiochim. Acta 3:26 (1964).Google Scholar
  14. 14.
    Amar Nath, S. Khorana, P. K. Mathur, and S. Sarup, Indian J. Chem. 4:51 (1960).Google Scholar
  15. 15.
    Amar Nath and S. P. Vaish, J. Chem. Phys. 46:4660 (1967). 15a. R. T. Mullen, this volume.CrossRefGoogle Scholar
  16. 16.
    Amar Nath, Michael Harpold, and Melvin P. Klein, Chem. Phys. Letters 2:471 (1968).CrossRefGoogle Scholar
  17. 17.
    R. H. Herber and H. A. Stöckler, in: Proceedings of the Symposium on Chemical Effects of Nuclear Transformations, I.A.E.A., Vienna (1965), Vol. II, p. 403.Google Scholar
  18. 18.
    J. L. Thompson, private communication.Google Scholar
  19. 19.
    Amar Nath, Melvin P. Klein, and Walter Kündig, unpublished work.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • A. Nath
    • 1
  • M. P. Klein
    • 1
  • W. Kündig
    • 2
  • D. Lichtenstein
    • 2
  1. 1.Laboratory of Chemical Biodynamics, Lawrence Radiation LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.University of CaliforniaLos AngelesUSA

Personalised recommendations