Mössbauer Effect Studies of Lattice-Dynamic Anisotropy and Line Asymmetry in Semiconductor and Organometallic Tin Compounds

  • Hans A. Stöckler
  • Hirotoshi Sano


The lattice-dynamic anisotropy in double-layer molecules of stannous sulfide and dioctyltinoxide was investigated in the temperature range 60–320°K by observing the Karyagin effect in Mössbauer doublet spectra. It was found that in molecules with a two-dimensional polymeric network the motion of the Mössbauer atom is largest in the direction perpendicular to the plane of the extended layer, and that the lattice-dynamic anisotropy increases at higher temperatures. The “polymer effect” enhances the recoilless fraction by restricting the motion of the molecule in the direction of the polymer bonding. An analysis for the evaluation of absolute values of the recoilless fraction has been outlined. It has long been recognized that many group Iva/VIa binary compounds have characteristic semiconducting properties. In particular, PbS, PbSe, PbTe, and SnTe, with regular rock-salt structures, are some of the more well-known infrared-sensitive photoconductors. Another prominent set of binary compounds belonging to this group is the series GeS, GeSe, SnS, and SnSe. This series of isomorphous semiconductors crystallizes in a distorted NaCl structure forming a puckered double-layer molecule with a pseudotetragonal array that extends infinitely in two dimensions perpendicular to the crystal c axis. The crystal structures of GeS, GeSe, SnS, and SnSe indicate that the most probable space group is D 2h 16 Pcmn and that the stereochemistry of this series is closely analogous to that of black phosphorus. It is shown that stannous selenide is lattice-dynamically and electronically isomorphous with stannous sulfide. The observed lattice-dynamic anisotropy in both SnS and SnSe would contribute to the anisotropic semiconducting behavior in these materials. It is suggested that a rigid-body treatment as applied to a layer-type structure could be extended to include the motion of atoms on the surface of small particles. A Thirring expansion analysis is used to determine the frequency moment in the high-temperature limit for SnS. Analysis of the “effective mass” of electrons and atoms in stannous sulfide is given.


Isomer Shift Quadrupole Splitting Mossbauer Spectrum Black Phosphorus Frequency Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Dutta and G. A. Jeffrey, Inorg. Chem. 4:1363 (1965).CrossRefGoogle Scholar
  2. 2.
    W. Hofmann, Z. Krist. 92:161 (1935).Google Scholar
  3. 3.
    A. Okazaki and I. Ueda, J. Phys. Soc. Japan 11:470 (1956).CrossRefGoogle Scholar
  4. 4.
    H. Gobrecht and A. Bartschat, Z. Physik 149:511 (1957).CrossRefGoogle Scholar
  5. 5.
    W. Albers, C. Haas, and F. vander Maesen, J. Phys. Chem. Solids 15:306 (1960).CrossRefGoogle Scholar
  6. 6.
    C. Haas and M. M. G. Corbey, J. Phys. Chem. Solids 20:197 (1961).CrossRefGoogle Scholar
  7. 7.
    W. Albers, C. Haas, H. Ober, G. R. Schodder, and J. D. Wasscher, J. Phys. Chem. Solids 23:215 (1962).CrossRefGoogle Scholar
  8. 8.
    G. Lang, Nucl. Instr. Methods 24:425 (1963).CrossRefGoogle Scholar
  9. 9.
    H. A. Stöckler and H. Sano, Physics Letters 25A:550 (1967).Google Scholar
  10. 10.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford University, 1961), Chap. VI.Google Scholar
  11. 11.
    H. A. Stöckler, H. Sano, and R. H. Herber, J. Chem. Phys. 45:1182 (1966).CrossRefGoogle Scholar
  12. 12.
    D. W. J. Cruickshank et al., Computing Methods and the Phase Problems in X-Ray Crystal Analysis (Pergamon Press, New York, 1961), p. 71.Google Scholar
  13. 13.
    P. Zory, Phys. Rev. 140:A1401 (1965).CrossRefGoogle Scholar
  14. 14.
    S. V. Karyagin, Dokl. Akad. Nauk. SSSR 148:1102 (1963) [English transi.: Proc. Acad. Sci. USSR, Phys. Chem. Sect. 148:110 (1963)].Google Scholar
  15. 15.
    S. V. Karyagin, Fiz. Tverd. Tela. 5:2128 (1963) [English transi.: Soviet Physics—Solid State, 5:1552 (1964)].Google Scholar
  16. 16.
    S. V. Karyagin, Fiz. Tverd. Tela 8:1739 (1966)Google Scholar
  17. 16a.
    S. V. Karyagin, Fiz. Tverd. Tela 9:2514(1967)[English transi.: Soviet Physics—Solid State 8:1387 (1966); 9:1979 (1967)].Google Scholar
  18. 17.
    J. P. Bocquet, Y. Y. Chu, G. T. Emery, and M. L. Perlman, Phys. Rev. 167:1117(1968).CrossRefGoogle Scholar
  19. 18.
    H. Frauenfelder, D. E. Nagle, R. D. Taylor, D. R. F. Cochran, and W. M. Vissacher, Phys. Rev. 126:1065 (1962).CrossRefGoogle Scholar
  20. 19.
    J. T. Dehn, J. G. Marzolf, J. F. Salmon, Phys. Rev. 135:B1307 (1964).CrossRefGoogle Scholar
  21. 20.
    L. Van Hove, Phys. Rev. 95:249 (1954).CrossRefGoogle Scholar
  22. 21.
    J. Petzold, Z. Physik 163:71 (1961).CrossRefGoogle Scholar
  23. 22.
    E. W. J. Cruickshank, Acta Cryst. 9:754 (1956).CrossRefGoogle Scholar
  24. 23.
    V. Schomaker and K. N. Trueblood, Acta Cryst. 21:A247 (1966).Google Scholar
  25. 24.
    D. M. Burns, W. G. Ferrier, and J. T. McMullan, Acta Cryst. 23:1098 (1967).CrossRefGoogle Scholar
  26. 25.
    K. Lonsdale, Acta Cryst. 14:37 (1961).CrossRefGoogle Scholar
  27. 26.
    V. Schomaker and K. N. Trueblood, Acta Cryst. B24:63 (1968).Google Scholar
  28. 27.
    E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959).Google Scholar
  29. 28.
    H. Stöckler and H. Sano, Nucl. Instr. Meth. 44:103 (1966).CrossRefGoogle Scholar
  30. 29.
    H. Stöckler and H. Sano, Trans. Faraday Soc. 64:577 (1968).CrossRefGoogle Scholar
  31. 30.
    D. W. Hafemeister and E. B. Shera, Nucl. Inst. Meth. 41:133 (1966).CrossRefGoogle Scholar
  32. 31.
    D. A. O’Connor, Nucl. Inst. Meth. 24:425 (1963).CrossRefGoogle Scholar
  33. 32.
    C. Hohenemser, Phys. Rev. 139A:185 (1965).CrossRefGoogle Scholar
  34. 33.
    W. Cochran, Rep. Progr. Phys. 26:1 (1963).CrossRefGoogle Scholar
  35. 34.
    S. S. Jaswal, J. Chem. Phys. 46:4311 (1967).CrossRefGoogle Scholar
  36. 35.
    W. Cochran and G. S. Pawley, Proc. Roy. Soc. 280A:1 (1964).Google Scholar
  37. 36.
    H. A. Stöckler, H. Sano, and R. H. Herber, J. Chem. Phys. 47:1567 (1967).CrossRefGoogle Scholar
  38. 37.
    R. L. Mössbauer and D. H. Sharp, Rev. Mod. Phys. 36:410 (1964).CrossRefGoogle Scholar
  39. 38.
    H. A. Stöckier and H. Sano, Phys. Rev. 165:406 (1968).CrossRefGoogle Scholar
  40. 39.
    H. A. Stockier and H. Sano, in: Molecular Dynamics and Structure of Solids, Proceedings 2nd Materials Research Symposium (National Bureau of Standards, US Department of Commerce, Washington, D.C. 1967).Google Scholar
  41. 40.
    H. Sano, M. Aratani, and H. A. Stöckier, Physics Letters 26A:559 (1968).Google Scholar
  42. 41.
    R. W. James, The Optical Principles of the Diffraction of X-Rays (Cornell University Press, New York, 1965), Chap. V.Google Scholar
  43. 42.
    A. J. F. Boyle, D. St. P. Bunbury, and C. Edwards, Proc. Phys. Soc., 79:416 (1962).CrossRefGoogle Scholar
  44. 43.
    J. C. Travis, PhD Thesis, The University of Texas, August 1967.Google Scholar
  45. 44.
    D. L. Alleston, A. G. Davies, and M. Hancock, J. Chem. Soc. 1964:5744.Google Scholar
  46. 45.
    W. T. Reichle, J. Polymer Sci. 49:521 (1961).CrossRefGoogle Scholar
  47. 46.
    J. L. Feldman and G. K. Horton, Phys. Rev. 132:644 (1963).CrossRefGoogle Scholar
  48. 47.
    A. F. Wells, Structural Inorganic Chemistry (Oxford University Press, London 1962), 3rd ed., p. 902.Google Scholar
  49. 48.
    R. E. Rundle and D. H. Olson, Inorg. Chem. 3:596 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Hans A. Stöckler
    • 1
  • Hirotoshi Sano
    • 2
  1. 1.Department of Chemical PhysicsNational Lead Company Research LaboratoriesHightstownUSA
  2. 2.Department of ChemistryOchanomizu UniversityTokyoJapan

Personalised recommendations