Advertisement

Some Aspects of the Fracture of Metallic Composites

  • J. Gurland
Conference paper
Part of the Fundamental Phenomena in the Materials Sciences book series (FPMS, volume 4)

Abstract

In this chapter the fracture initiation and modes of failure of composites consisting of a brittle phase embedded in a ductile matrix are discussed. Factors contributing to crack initiation at reinforcing particles are residual stresses of thermal origin, elastic stress concentration, and plastic deformation. The fracture ductility of a particle-strengthened ductile metal is related to the particle concentration. Finally, the relative strengths of a brittle phase in bulk, as a bundle of fibers, and as embedded particles and fibers, are compared on the basis of statistical models of the state of aggregation and fracture mode.

Keywords

Fracture Mode Fracture Strength Strength Distribution Tungsten Wire Ductile Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kelly and R. B. Nicholson, Progr. Mater. Sci. 10: 149 (1963).Google Scholar
  2. 2.
    A. Kelly and G. J. Davies, Metallurgical Rev. 10: 1 (1965).Google Scholar
  3. 3.
    D. G. Westlake, Trans. Am. Soc. Metals 56: 1 (1963).Google Scholar
  4. 4.
    W. H. Sutton et al., General Electric Company Report, Contract Nonr-60–045-d, 1960–64, cited in Reference 2.Google Scholar
  5. 5.
    J. Gurland and J. Plateau, Trans. Am. Soc. Metals 56: 442 (1963).Google Scholar
  6. 6.
    C. T. Liu and J. Gurland, Trans. Am. Soc. Metals 58: 66 (1965).Google Scholar
  7. 7.
    J. Gurland, Trans. Am. Soc. Metals 50: 1064 (1958).Google Scholar
  8. 8.
    R. H. Edwards, J. Appl. Mech. 18: 19 (1951).Google Scholar
  9. 9.
    J. N. Goodier, J. Appl. Mech., Trans. ASME 55: A39 (1933).Google Scholar
  10. 10.
    C. Nishimatsu and J. Gurland, Trans. Am. Soc. Metals 52: 469 (1960). U.A. Gangulee and J. Gurland, Trans. Met. Soc. AIME (1967) (in press).Google Scholar
  11. 12.
    B. I. Edelson and W. M. Baldwin, Jr., Trans. Am. Soc. Metals 55: 230 (1962).Google Scholar
  12. 13.
    B. W. Rosen, Fiber Composite Materials, American Society for Metals (Novelty, Ohio), 1965, p. 37.Google Scholar
  13. 14.
    B. Epstein, J. Appl. Phys. 19: 140 (1948).CrossRefGoogle Scholar
  14. 15.
    B. D. Coleman, J. Mech. Phys. Solids 7: 60 (1958).CrossRefGoogle Scholar
  15. 16.
    D. E. Gucer and J. Gurland, J. Mech. Phys. Solids 10: 365 (1962).CrossRefGoogle Scholar
  16. 17.
    D. E. Gucer and J. Gurland, Jernkontorets Ann. 147: 111 (1963).Google Scholar
  17. 18.
    D. L. McDanels, R. W. Jech, and J. W. Weeton, Metal Progr. 78: 118 (1960), cited in Reference 2.Google Scholar
  18. 19.
    A. Kelly and W. R. Tyson, Proceedings of the 2nd International Materials Symposium, Wiley (New York), 1964, cited in Reference 2.Google Scholar
  19. 20.
    J. Gurland and J. T. Norton, Plansee Proceedings 1955, Pergamon Press (London), 1956, p. 99.Google Scholar
  20. 21.
    D. C. Drucker, High Strength Materials, V. F. Zackay (ed.), Wiley (New York), 1965, p. 795.Google Scholar
  21. 22.
    J. G. Morley, Proc. Roy. Soc. 282A: 43 (1964).Google Scholar
  22. 23.
    R. W. Hertzberg, F. D. Lemkey, and J. A. Ford, Trans. Met. Soc. AIME 233: 342 (1965).Google Scholar
  23. 24.
    D. L. McDanels, R. W. Jech, and J. W. Weeton, NASA Technical Note, TND-1881, 1963.Google Scholar
  24. 25.
    N. P. Parikh, Fiber Composite Materials, American Society for Metals (Novelty, Ohio), 1965, p. 115.Google Scholar
  25. 26.
    J. Gurland, Trans. Met. Soc. AIME 227: 1146 (1963).Google Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • J. Gurland
    • 1
  1. 1.Brown UniversityProvidenceUSA

Personalised recommendations