Fracture of Ceramics

  • R. J. Stokes
Conference paper
Part of the Fundamental Phenomena in the Materials Sciences book series (FPMS, volume 4)


Fracture mechanisms observed in ceramic single crystals and poly-crystals will be reviewed. Discussion of single-crystal behavior will emphasize the role of plastic deformation in the nucleation, growth, and propagation of cracks. Discussion of polycrystalline behavior will emphasize the application of the Von Mises criterion to ceramic materials. The effect of temperature on dislocation mobility and slip band structure will be used to describe the brittle-to-ductile transition in both single- and polycrystalline ceramics.


Rock Salt Fracture Strength Slip Band Slip Surface Lattice Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Gilman, “Dislocations in Ceramic and Metal Crystals,” in: L. J. Bonis and H. H. Hausner (eds.), Fundamental Phenomena in the Material Sciences, Plenum Press (New York), 1964, p. 67.Google Scholar
  2. 2.
    J. J. Gilman, Acta Met. 7: 608 (1959).CrossRefGoogle Scholar
  3. 3.
    R. J. Charles, “Static Fatigue: Delayed Fracture,” in: N. A. Weil (ed.), Studies of the Brittle Behavior of Ceramic Materials, Technical Report ASD-TR-61–628, Part II, April, 1963, p. 468.Google Scholar
  4. 4.
    A. Briggs, F. J. P. Clarke, and H. G. Tattersall, Phil. Mag. 9: 1041 (1964).CrossRefGoogle Scholar
  5. 5.
    A. S. Argon and E. Orowan, Phil. Mag. 9: 1023 (1964).CrossRefGoogle Scholar
  6. 6.
    R. J. Stokes, T. L. Johnston, and C. H. Li, Phil Mag. 6: 9 (1961).CrossRefGoogle Scholar
  7. 7.
    R. B. Day and R. J. Stokes, J. Am. Ceram. Soc. 46: 317 (1963).CrossRefGoogle Scholar
  8. 8.
    G. W. Groves and A. Kelly, Phil. Mag. 8: 877 (1963).CrossRefGoogle Scholar
  9. 9.
    T. L. Johnston, R. J. Stokes, and C. H. Li, Phil. Mag. 7: 23 (1962).CrossRefGoogle Scholar
  10. 10.
    R. J. Stokes and C. H. Li, “Dislocations and the Strength of Polycrystalline Ceramics,” in: H. H. Stadelmaier and W. W. Austin (eds.), Material Sciences Research, Vol. I, Plenum Press (New York), 1963, p. 133.Google Scholar
  11. 11.
    R.J. Stokes and C. H. Li, “The Anisotropic Extension of Microcracks by Plastic Flow in Semi-Brittle Solids,” in: D. C. Drucker and J. J. Gilman (eds.), Fracture of Solids, Interscience (New York), 1963, p. 289.Google Scholar
  12. 12.
    F. J. P. Clarke, R. A. J. Sambell, and H. G. Tattersall, Phil. Mag. 7: 393 (1962).CrossRefGoogle Scholar
  13. 13.
    J. J. Gilman, Trans. AIME 209: 449 (1957).Google Scholar
  14. 14.
    J. J. Gilman, J. Appl. Phys. 31: 2208 (1960).CrossRefGoogle Scholar
  15. 15.
    A. R. C. Westwood and T. T. Hitch, J. Appl. Phys. 34: 3085 (1963).CrossRefGoogle Scholar
  16. 16.
    A. R. C. Westwood and D. L. Goldheim, J. Appl. Phys. 34: 3335 (1963).CrossRefGoogle Scholar
  17. 17.
    T. L. Johnston, C. H. Li, and R. J. Stokes, “The Strength of Ionic Solids,” in: Strengthening Mechanisms in Solids, American Society of Metals (Cleveland), 1962, p. 341.Google Scholar
  18. 18.
    R. J. Stokes, Proc. Brit. Ceram. Soc. 6: 189 (1966).Google Scholar
  19. 19.
    R. J. Stokes, T. L. Johnston, and C. H. Li, Phil. Mag. 4: 920 (1959).CrossRefGoogle Scholar
  20. 20.
    Ibid., p. 1316.CrossRefGoogle Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • R. J. Stokes
    • 1
    • 2
  1. 1.Carnegie Institute of TechnologyPittsburghUSA
  2. 2.Honeywell Research CenterHopkinsUSA

Personalised recommendations