The Strength of Inorganic Glasses

  • R. E. Mould
Conference paper
Part of the Fundamental Phenomena in the Materials Sciences book series (FPMS, volume 4)

Abstract

Factors influencing the observed fracture strength of inorganic glasses will be reviewed. These include the physical and chemical condition of the surface prior to test, the ambient conditions during test, the duration or rate of application of the load, and the chemical composition of the glass itself. Although the mechanical condition of the surface with respect to prior abrasions is by far the most important variable, each of the others also produces significant effects. A brief review of currently outstanding questions regarding the strength of inorganic glasses will be included as will a discussion of problems associated with the ultimate utilization of the very high strength of pristine undamaged glass.

Keywords

Fatigue Furnace Carbide Mold Brittle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Standard Definitions of Terms Relating to Glass and Glass Products,” ASTM Designation: C162–66, prepared jointly by the American Ceramic Society and the American Society for Testing Materials.Google Scholar
  2. 2.
    D. M. Marsh, Proc. Roy. Soc. A273: 420 (1964).Google Scholar
  3. 3.
    A. A. Griffith, Phil. Trans. Roy. Soc. (London) A221: 163 (1920).Google Scholar
  4. 4.
    A. A. Griffith, Proceedings of the First International Congress of Applied Mechanics, Delft, 1924, pp. 55–63.Google Scholar
  5. 5.
    W. B. Hillig, “Sources of Weakness and the Ultimate Strength of Brittle Amorphous Solids,” in: J. D. Mackenzie, Modern Aspects of the Vitreous State, Vol. 2, Butterworths (Washington), 1962, pp. 152–194.Google Scholar
  6. 6.
    R. A. Sack, Proc. Phys. Soc. (London) 58: 729 (1946).CrossRefGoogle Scholar
  7. 7.
    H. A. Elliott, Proc. Phys. Soc. (London) 59: 20S (1947).CrossRefGoogle Scholar
  8. 8.
    G. W. Morey, Properties of Glass, 2nd ed., Reinhold (New York), 1954, p. 99.Google Scholar
  9. 9.
    C. J. Phillips, Am. Scientist 53: 20 (1965).Google Scholar
  10. 10.
    C. E. Inglis, Trans. Inst. Nav. Archit. (London) 55: 219 (1913).Google Scholar
  11. 11.
    H. Neuber, Kerbspannungslehre; Grundlagen für genaue Spannungsrechnung (Theory of Notch Stresses; Principles for Exact Stress Calculation), Springer Verlag (Berlin), 1937; English Transl., J.W. Edwards (Ann Arbor, Michigan), 1946.Google Scholar
  12. 12.
    E. Orowan, Welding J. 34: 1575 (1955).Google Scholar
  13. 13.
    R. E. Mould and R. D. Southwick, J. Am. Ceram. Soc. 42: 542 (1959).CrossRefGoogle Scholar
  14. 14.
    Ibid., p. 582.CrossRefGoogle Scholar
  15. 15.
    W. C. Levengood, J. Appl. Phys. 29: 820 (1958).CrossRefGoogle Scholar
  16. 16.
    E. B. Shand, J. Am. Ceram. Soc. 48: 43 (1965).CrossRefGoogle Scholar
  17. 17.
    M. Watanabe, R. V. Caporali, and R. E. Mould, Phys. Chem. Glasses 2: 12 (1961).Google Scholar
  18. 18.
    R. V. Caporali and R. E. Mould, unpublished results. (See also [24].)Google Scholar
  19. 19.
    W. B. Hillig, “The Factors Affecting the Ultimate Strength of Bulk Fused Silica,” in: Symposium sur la Résistance Méchanique du Verre et les Moyens de l’Améliorer (Symposium on the Mechanical Strength of Glass and Ways of Improving It), Union Scientifique Continentale du Verre (Charleroi, Belgium), 1962, p. 295 (article in English).Google Scholar
  20. 20.
    V. G. Morley, P. A. Andrews, and I. Whitney, Phys. Chem. Glasses 5: 1 (1964).Google Scholar
  21. 21.
    W. F. Thomas, Phys. Chem. Glasses 1: 4 (1960).Google Scholar
  22. 22.
    V. Cornelissen and A. L. Zijlstra, “The Strength of Glass Rods as a Result of Various Treatments,” in: Symposium sur la Résistance Méchanique du Verre et les Moyens de l’Améliorer (Symposium on the Mechanical Strength of Glass and Ways of Improving It), Union Scientifique Continentale du Verre (Charleroi, Belgium), 1962, p. 337 (article in English).Google Scholar
  23. 23.
    W. Brearley and D. G. Holloway, Phys. Chem. Glasses 4: 69 (1963).Google Scholar
  24. 24.
    R. V. Caporali and R. E. Mould, “Effect of Heat Treatment on the Strength of Pristine Bulk Glass,” in: F. R. Matson and G. E. Rindone, Advances in Glass Technology, Part 2, Plenum Press (New York), 1963, p. 30.Google Scholar
  25. 25.
    J. E. Ritter, Jr., and A. R. Cooper, Jr., Phys. Chem. Glasses 4: 76 (1963).Google Scholar
  26. 26.
    A. J. Holland and W. E. S. Turner, J. Soc. Glass Technol. 18: 225 (1934).Google Scholar
  27. 27.
    A. J. Holland and W. E. S. Turner, J. Soc. Glass Technol. 20: 279 (1936).Google Scholar
  28. 28.
    F. M. Ernsberger, “A Study of the Origin and Frequency of Occurrence of Griffith Microcracks on Glass Surfaces,” in: Advances in Glass Technology (Proceedings of the Sixth International Glass Congress), Plenum Press (New York), 1962, pp. 511–524.Google Scholar
  29. 29.
    F. M. Ernsberger, “Current Status of the Griffith Crack Theory of Glass Strength,” in: J. E. Burke, Progress in Ceramic Science, Vol. 3, Macmillan (New York), 1963, pp. 58–76.Google Scholar
  30. 30.
    R. E. Mould, J. Am. Ceram. Soc. 35: 230 (1952).CrossRefGoogle Scholar
  31. 31.
    R. D. Southwick and R. E. Mould, unpublished results.Google Scholar
  32. 32.
    A. J. Holland and W. E. S. Turner, J. Soc. Glass Technol. 21: 383 (1937).Google Scholar
  33. 33.
    P. R. Ord, J. Soc. Glass Technol. 41: 245 (1957).Google Scholar
  34. 34.
    H. E. Powell and F. W. Preston, J. Am. Ceram. Soc. 28: 145 (1945).CrossRefGoogle Scholar
  35. 35.
    J. P. A. Tillett, Proc. Phys. Soc. B69: 47 (1956).Google Scholar
  36. 36.
    F. C. Roesler, Proc. Phys. Soc. B69: 55 (1956).Google Scholar
  37. 37.
    Ibid., p. 981.Google Scholar
  38. 38.
    L. G. Ghering and F. W. Preston, Bull. Am. Ceram. Soc. 19: 290 (1940).Google Scholar
  39. 39.
    E. B. Shand, J. Am. Ceram. Soc. 37: 52 (1954).CrossRefGoogle Scholar
  40. 40.
    R. J. Charles, “A Review of Glass Strength,” in: J. E. Burke, Progress in Ceramic Science, Vol. 1, Pergamon Press (New York), 1961, pp. 1–38.Google Scholar
  41. 41.
    R. E. Mould, J. Appl. Phys. 29: 1263 (1958).CrossRefGoogle Scholar
  42. 42.
    W. Brearley, P. A. P. Hastilow, and D. G. Holloway, Phys. Chem. Glasses 3: 181 (1962).Google Scholar
  43. 43.
    B. A. Proctor, Phys. Chem. Glasses 3: 7 (1962).Google Scholar
  44. 44.
    C. Symmers, J. B. Ward, and B. Sugarman, Phys. Chem. Glasses 3: 76 (1962).Google Scholar
  45. 45.
    R. E. Mould, J. Am. Ceram. Soc. 43: 160 (1960).CrossRefGoogle Scholar
  46. 46.
    M. Grenet, Bull. Soc. Encour. Ind. Natl., Ser. 5, 4: 839 (1899);Google Scholar
  47. 46a.
    abridged translation by F. W. Preston, Glass Ind. 15: 277 (1934);Google Scholar
  48. 46b.
    see also F. W. Preston, J. Am. Ceram. Soc. 18: 220 (1935).CrossRefGoogle Scholar
  49. 47.
    R. E. Mould, J. Am. Ceram. Soc. 44: 481 (1961).CrossRefGoogle Scholar
  50. 48.
    T. C. Baker and F. W. Preston, J. Appl. Phys. 17: 170 (1946).CrossRefGoogle Scholar
  51. 49.
    Ibid., p. 179.CrossRefGoogle Scholar
  52. 50.
    L. H. Milligan, J. Soc. Glass Technol. 13: 351 (1929).Google Scholar
  53. 51.
    C. Gurney and S. Pearson, Proc. Phys. Soc. (London) 62: 469 (1949).CrossRefGoogle Scholar
  54. 52.
    V. K. Moorthy and F. V. Tooley, J. Am. Ceram. Soc. 39: 215 (1956).CrossRefGoogle Scholar
  55. 53.
    R. J. Charles, J. Appl. Phys. 29: 1549 (1958).CrossRefGoogle Scholar
  56. 54.
    R. E. Mould, Glastechn. Ber. 32K: III 18 (1959).Google Scholar
  57. 55.
    W. H. Otto, The Effects of Moisture on the Strength of Glass Fibers-Literature Review, U. S. Naval Research Laboratory, Contract Nonr 4522(00) (X), 1965. (Clearinghouse for Federal Scientific and Technical Information No. AD629–370.)Google Scholar
  58. 56.
    E. Orowan, Nature 154: 341 (1944).CrossRefGoogle Scholar
  59. 57.
    H. A. Elliott, J. Appl. Phys. 29: 224 (1958).CrossRefGoogle Scholar
  60. 58.
    R. J. Charles and W. B. Hillig, “The Kinetics of Glass Failure by Stress Corrosion,” in: Symposium sur la Résistance Méchanique du Verre et les Moyens de l’Améliorer, Union Scientifique Continentale du Verre (Charleroi, Belgium), 1962, pp. 511–527 (article in English).Google Scholar
  61. 59.
    S. M. Wiederhorn, “Influence of Water Vapor on Crack Propogation in Soda-Lime Glass,” presented at 68th Annual Meeting, American Ceramic Society (Washington, D. C.), April, 1966.Google Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • R. E. Mould
    • 1
  1. 1.American Glass Research, Inc.ButlerUSA

Personalised recommendations