Advertisement

The Effects of Solutes on the Fracture Behavior of Metals

  • N. S. Stoloff
Conference paper
Part of the Fundamental Phenomena in the Materials Sciences book series (FPMS, volume 4)

Abstract

A transition from ductile behavior at high temperatures to brittle fracture at low temperatures is characteristic of most metals of bcc or hcp structure. Alloying elements may either raise or lower the transition temperature by changing one or more of the following: grain size, deformation modes, distribution of impurity atoms, amount and distribution of second-phase particles, and strength of the crystal. Metals of fcc structure, while ordinarily not exhibiting a ductile-to-brittle transition, undergo brittle failure in the presence of corrosive environments and certain liquid metals. Alloying additions tend to increase the susceptibility to embrittlement in these cases, although the detailed mechanisms are not yet well established. These effects are discussed in terms of the Cottrell-Petch theory of fracture.

Keywords

Slip System Fracture Behavior Refractory Metal Iron Steel Inst Basal Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Griffith, Phil. Trans. Roy. Soc. (London) 221A: 163 (1920).Google Scholar
  2. 2.
    N. P. Allen, Iron and its Dilute Solid Solutions, Interscience (New York), 1963, p. 271.Google Scholar
  3. 3.
    G. T. Hahn, A. Gilbert, and R. I. Jaffee, Refractory Metals and Alloys II, Wiley (New York), 1963, p. 23.Google Scholar
  4. 4.
    A. H. Cottrell, Trans. AIME 212 : 192 (1958).Google Scholar
  5. 5.
    N. J. Petch, Phil. Mag. 3: 1089 (1958).CrossRefGoogle Scholar
  6. 6.
    N. J. Petch, Fracture, Wiley (New York), 1959, p. 54.Google Scholar
  7. 7.
    A. H. Cottrell, Fracture, Wiley (New York), 1959, p. 20.Google Scholar
  8. 8.
    H. Conrad and G. Schoeck, Acta Met. 8: 791 (1960).CrossRefGoogle Scholar
  9. 9.
    W. S. Owen and D. Hull, Refractory Metals and Alloys II, Wiley (New York), 1963, p. 1.Google Scholar
  10. 10.
    R. J. Stokes and C. H. Li, in: H. H. Stadelmaier and W. W. Austin (eds.), Materials Science Research, Vol. I, Plenum Press (New York), 1963, p. 133.Google Scholar
  11. 11.
    F. E. Hauser, R. P. Landon, and J. E. Dorn, Trans. Am. Soc. Metals 50: 856 (1958).Google Scholar
  12. 12.
    N. S. Stoloff, D. K. Lezius, and T. L. Johnston, J. Appl. Phys. 34: 3315 (1963).CrossRefGoogle Scholar
  13. 13.
    J. D. Meakin and N. J. Petch, Fracture of Solids, Wiley (New York), 1963, p. 393.Google Scholar
  14. 14.
    T. L. Johnston, R. G. Davies, and N. S. Stoloff, Phil. Mag. 12: 305 (1965).CrossRefGoogle Scholar
  15. 15.
    E. Smith and P. J. Worthington, Conference on Fracture, Sendai (Japan), 1965.Google Scholar
  16. 16.
    L. von Mises, Z. Angew. Math. Mech. 8:161 (1928).CrossRefGoogle Scholar
  17. 17.
    R. Armstrong, I. Codd, R. M. Douthwaite, and N. J. Petch, Phil. Mag. 7: 45 (1962).CrossRefGoogle Scholar
  18. 18.
    P. J. Worthington and E. Smith, Acta Met. 14: 35 (1966).CrossRefGoogle Scholar
  19. 19.
    G. Sachs, Z. Ver. Ing. 72: 734 (1928).Google Scholar
  20. 20.
    G. I. Taylor, J. Inst. Metals 62: 307 (1938).Google Scholar
  21. 21.
    J. D. Meakin and N. J. Petch, Symposium on Role of Substructure, ASD-TDR-63–324 (1963), p. 243.Google Scholar
  22. 22.
    J. J. Gilman, Plasticity-Proceedings Second Symposium on Naval Structural Mechanics, Pergamon (New York), 1960, p. 43.Google Scholar
  23. 23.
    N. P. Allen, B. E. Hopkins, and J. E. McLennan, Proc. Roy. Soc. 234A: 221 (1959).Google Scholar
  24. 24.
    W. D. Biggs and P. L. Pratt, Acta Met. 6: 694 (1958).CrossRefGoogle Scholar
  25. 25.
    B. Edmondson, Proc. Roy. Soc. 264A: 176 (1961).Google Scholar
  26. 26.
    D. S. Tomalin and D. F. Stein, General Electric Research Laboratory Report No. 65-RL-3938M, April, 1965.Google Scholar
  27. 27.
    A. Lawley, J. Van Den Sype, and R. Maddin, J. Inst. Metals 91: 23 (1962).Google Scholar
  28. 28.
    R. L. Smith and J. L. Rutherford, Trans. AIME 209: 857 (1957).Google Scholar
  29. 29.
    N.P. Allen, W.P. Rees, B.E. Hopkins, and H. R. Tipler, J. Iron Steel Inst. 174: 108 (1953).Google Scholar
  30. 30.
    B. E. Hopkins and H. R. Tipler, J. Iron Steel Inst. 177 : 110 (1954).Google Scholar
  31. 31.
    W. P. Rees and B. E. Hopkins, J. Iron Steel Inst. 172: 403 (1952).Google Scholar
  32. 32.
    B. A. Loomis and O. N. Carlson, Reactive Metals, Interscience (New York), 1959, p. 227.Google Scholar
  33. 33.
    B. E. Hopkins and H. R. Tipler, J. Iron Steel Inst. 188: 218 (1958).Google Scholar
  34. 34.
    W. P. Rees, B. E. Hopkins, and H. R. Tipler, J. Iron Steel Inst. 177: 93 (1954).Google Scholar
  35. 35.
    N. S. Stoloff, R. G. Davies, and R. C. Ku, Trans. AIME 233: 1500 (1965).Google Scholar
  36. 36.
    M. J. Marcinkowski and H. Chessin, Phil. Mag. 10: 837 (1964).CrossRefGoogle Scholar
  37. 37.
    C. W. Chen, J. Appl. Phys. 32: 348s (1961).CrossRefGoogle Scholar
  38. 38.
    N. S. Stoloff and R. G. Davies, Acta Met. 12: 423 (1964).CrossRefGoogle Scholar
  39. 39.
    W. Justusson et al., Trans. Am. Soc. Metals 49: 905 (1957).Google Scholar
  40. 40.
    N. S. Stoloff and R. G. Davies, Ford Scientific Laboratory Report No. SL64–7, March 1, 1964.Google Scholar
  41. 41.
    W. Barr and A. J. K. Honeyman, J. Iron Steel Inst. 157: 239 (1947).Google Scholar
  42. 42.
    J. M. Hodge, H. D. Manning, and H. M. Reichhold, Trans. AIME 185: 233 (1949).Google Scholar
  43. 43.
    M. Gensamer, Trans. AIME 215: 2 (1959).Google Scholar
  44. 44.
    N. S. Stoloff, unpublished.Google Scholar
  45. 45.
    H. H. Kranzlein, M. S. Burton, and G. V. Smith, Trans. AIME 233: 64 (1965).Google Scholar
  46. 46.
    A. J. McEvily, Jr., Ford Scientific Laboratory, private communication.Google Scholar
  47. 47.
    D. F. Stein and J. R. Low, Jr., J. Appl. Phys. 31: 687 (1960).CrossRefGoogle Scholar
  48. 48.
    J. K. Jackson and P. G. Winchell, Trans. AIME 230: 216 (1964).Google Scholar
  49. 49.
    T. Gladman and F. B. Pickering, J. Iron Steel Inst. 203: 1212 (1965).Google Scholar
  50. 50.
    J. G. Enrietto, Trans. AIME 224: 1119 (1962).Google Scholar
  51. 51.
    W. Heller and J. Brauner, Arch. Eisenhuettenw. 11: 1105 (1964).Google Scholar
  52. 52.
    C. Wert, J. Metals 4: 602 (June 1952).Google Scholar
  53. 53.
    J. A. Rineholt and W. J. Harris, Trans. Am. Soc. Metals 43: 1175 (1951).Google Scholar
  54. 54.
    A. B. Shelmerdine and D. A. Robins, J. Iron Steel Inst. 203: 40 (1965).Google Scholar
  55. 55.
    E. A. Loria, Trans. Am. Soc. Metals 58: 221 (1965).Google Scholar
  56. 56.
    L. E. Olds and G. W. P. Ringstorff, Trans. AIME 209: 468 (1957).Google Scholar
  57. 57.
    E. P. Abrahamson, II, and N. J. Grant, Department of the Navy, Bureau of Aeronautics Report No. NOas 56–1090-d, 1957.Google Scholar
  58. 58.
    O. N. Carlson, L. L. Sherwood, and F. A. Schmidt, J. Less-Common Metals 6: 439 (1964).CrossRefGoogle Scholar
  59. 59.
    R. W. Fraser and J. A. Lund, Can. Met. Quart. 1: 1 (1962).CrossRefGoogle Scholar
  60. 60.
    W. D. Klopp, F. C. Holden, and R. I. Jaffee, Battelle Technical Report Nonr. 1512 (00), July 1960.Google Scholar
  61. 61.
    R. I. Jaffee, D. J. Maykuth, and R. W. Douglass, Refractory Metals and Alloys, Interscience (New York), 1961, p. 383.Google Scholar
  62. 62.
    G. W. Parry and W. Evans, Nucleonics 22: 65 (1964).Google Scholar
  63. 63.
    W. Koster and M. O. Speidel, Z. Metallic. 56: 585 (1965).Google Scholar
  64. 64.
    J. Heslop and N. J. Petch, Phil. Mag. 2: 649 (1957).CrossRefGoogle Scholar
  65. 65.
    G. T. Hahn, M. Cohen, and B. L. Averbach, J. Iron Steel Inst. 200: 634 (1962).Google Scholar
  66. 66.
    F. E. Hauser, P. R. Landon, and J. E. Dorn, Trans. AIME 206: 589 (1956).Google Scholar
  67. 67.
    P. Feltham and J. D. Meakin, Phil. Mag. 2: 105 (1957).CrossRefGoogle Scholar
  68. 68.
    C. S. Barrett, G. Ansel, and R. F. Mehl, Trans. Am. Soc. Metals 25: 703 (1937).Google Scholar
  69. 69.
    A. Gilbert, Battelle Memorial Institute (Columbus, Ohio), private communication.Google Scholar
  70. 70.
    T. L. Johnston, this volume.Google Scholar
  71. 71.
    M. J. Marcinkowski and R. M. Fisher, Trans. AIME 233: 293 (1965).Google Scholar
  72. 72.
    R. I. Jaffee and G. T. Hahn, NPL Conference, Teddington, His Majesty’s Stationery Office (London), 1963, p. 708.Google Scholar
  73. 73.
    A. Lawley and R. Maddin, Trans. AIME 224: 573 (1962).Google Scholar
  74. 74.
    A. S. Keh, W. C. Leslie, and D. L. Sponseller, Precipitation in Iron Base Alloys, Gordon and Breach (New York), 1965, p. 281.Google Scholar
  75. 75.
    C. J. McMahon and M. Cohen, Acta Met. 13: 591 (1965).CrossRefGoogle Scholar
  76. 76.
    W. C. Leslie, G. B. Williams, and D. S. Hutton, J. Iron Steel Inst. 198: 21 (1961).Google Scholar
  77. 77.
    E. F. Petrova, M. I. Lapshina, and L. A. Shvartsman, Metal Sci. Heat Treat. Metals (USSR) (English Transl.), No. 4 (1960), p. 22.Google Scholar
  78. 78.
    D. G. Westlake, Trans. AIME 233: 368 (1965).Google Scholar
  79. 79.
    D. G. Westlake, Trans. Am. Soc. Metals 56: 1 (1963).Google Scholar
  80. 80.
    J. E. Harris and P. G. Partridge, Third European Regional Conf. on Electron Microscopy, Czechoslovakian Academy of Sciences (Prague), 1964.Google Scholar
  81. 81.
    A. S. Keh and S. Weissmann, Electron Microscopy and the Strength of Crystals, Interscience (New York), 1963, p. 231.Google Scholar
  82. 82.
    E. Anderson and J. Spreadborough, EUR 2354e, Euratom Contract 095–62–12 RDS (1965).Google Scholar
  83. 83.
    S. M. Ohr and D. N. Beshers, Phil. Mag. 10: 219 (1964).CrossRefGoogle Scholar
  84. 84.
    D. Hull, Phil Mag. 3: 1468 (1958).CrossRefGoogle Scholar
  85. 85.
    E. Hornbogen, Trans. Am. Soc. Metals 56: 16 (1963).Google Scholar
  86. 86.
    D. Hull, Acta Met. 8: 11 (1960).CrossRefGoogle Scholar
  87. 87.
    R. Honda, J. Phys. Soc. Japan 16: 1309 (1961).CrossRefGoogle Scholar
  88. 88.
    E. Hornbogen, Trans. AIME 221: 71 (1961).Google Scholar
  89. 89.
    T. Taoka, S. Takeuchi, and E. Furubayashi, J. Phys. Soc. Japan 19: 701 (1964).CrossRefGoogle Scholar
  90. 90.
    D. Hull, Acta Met. 9: 191 (1961).CrossRefGoogle Scholar
  91. 91.
    A. S. Wronski and A. A. Johnson, Phil. Mag. 7: 213 (1962).CrossRefGoogle Scholar
  92. 92.
    D. Hull and I. L. Mogford, Phil. Mag. 3: 1213 (1958).CrossRefGoogle Scholar
  93. 93.
    E. Hornbogen, Trans. Am. Soc. Metals 56: 16 (1963).Google Scholar
  94. 94.
    N. S. Stoloff, R. G. Davies, and T. L. Johnston, Conference on Environment-Sensitive Mechanical Behavior, Baltimore, June 1965, to be published.Google Scholar
  95. 95.
    R. C. Ku and T. L. Johnston, Phil. Mag. 9: 231 (1964).CrossRefGoogle Scholar
  96. 96.
    W. C. Leslie, J. T. Michalak, and F. W. Aul, Iron and Its Dilute Solid Solutions, Interscience (New York), 1963, p. 119.Google Scholar
  97. 97.
    J. Heslop and N. J. Petch, Phil. Mag. 5: 30 (1960).CrossRefGoogle Scholar
  98. 98.
    J. M. Krafft, A. M. Sullivan, and G. R. Irwin, J. Appl. Phys. 28: 379 (1957).CrossRefGoogle Scholar
  99. 99.
    J. M. Krafft, Appl. Materials Res. 3: 88 (1964).Google Scholar
  100. 100.
    H. Nichols and W. Rostoker, Acta Met. 8: 848 (1960).CrossRefGoogle Scholar
  101. 101.
    R. Rosenberg and I. Cadoff, Fracture of Solids, Interscience (New York), 1963, p. 607.Google Scholar
  102. 102.
    G. Thomas, J. Australian Inst. Metals 8: 80 (1963).Google Scholar
  103. 103.
    A. S. Tetelman and W. D. Robertson, Strengthening Mechanisms in Solids, American Society of Metals (Cleveland), 1963.Google Scholar
  104. 104.
    S. Barnartt, R. Stickln, and D. van Rooyen, Corrosion Science 3: 9 (1963).CrossRefGoogle Scholar
  105. 105.
    D. Tromans and J. Nutting, Fracture of Solids, Interscience (New York), 1963, p. 637.Google Scholar
  106. 106.
    H. W. Pickering and P. R. Swann, Corrosion 20: 15 (1964).Google Scholar
  107. 107.
    A. J. Forty and P. Humble, Phil. Mag. 8: 247 (1963).CrossRefGoogle Scholar
  108. 108.
    A. J. McEvily, Jr., and A. P. Bond, J. Electrochem. Soc. 112: 131 (1965).CrossRefGoogle Scholar
  109. 109.
    N. Ohtani and R. A. Dodd, Corrosion 21: 161 (1965).Google Scholar
  110. 110.
    N. S. Stoloffand, R. G. Davies, J. Inst. Metals 93: 127 (1965).Google Scholar
  111. 111.
    N. S. Stoloff and R. G. Davies, Trans. Am. Soc. Metals 57: 247 (1964).Google Scholar
  112. 112.
    N. S. Stoloffand R. G. Davies, Progr. Mater. Sci. 13: 1 (1966).CrossRefGoogle Scholar
  113. 113.
    K. J. Irvine and F. B. Pickering, J. Iron Steel Inst. 201: 944 (1963).Google Scholar
  114. 114.
    D. J. Burr, R. J. Butt, and D. W. Wakeman, J. Iron Steel Inst. 203: 500 (1965).Google Scholar
  115. 115.
    R. W. Armstrong, Phil. Mag. 9: 1063 (1964).CrossRefGoogle Scholar
  116. 116.
    A. Gilbert, C. N. Reid, and G. T. Hahn, J. Inst. Metals 92: 351 (1963).Google Scholar
  117. 117.
    A. J. McEvily, Jr., and R. C. Boettner, Fracture of Solids, Interscience (New York), 1963, p. 383.Google Scholar
  118. 118.
    G. S. Ansell and H. S. Kim, Powder Met., No. 10 (1962), p. 61.Google Scholar
  119. 119.
    T. L. Johnston, R. J. Stokes, and C. H. Li, Trans. AIME 221: 792 (1962).Google Scholar
  120. 120.
    D. J. H. Corderoy and R. W. K. Honeycombe, J. Inst. Metals 93: 432 (1964).Google Scholar
  121. 121.
    R. J. Price and A. Kelly, Acta Met. 11: 915 (1963).CrossRefGoogle Scholar
  122. 122.
    C. J. Beevers and R. W. K. Honeycombe, Acta Met. 10: 17 (1962).CrossRefGoogle Scholar
  123. 123.
    W. H. Erickson and D. Hardie, J. Inst. Metals 93: 444 (1965).Google Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • N. S. Stoloff
    • 1
  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations