Fracture of Polycrystals

  • T. L. Johnston
Conference paper
Part of the Fundamental Phenomena in the Materials Sciences book series (FPMS, volume 4)


In many crystalline solids, the fracture event is intimately related to plastic deformation processes. In polycrystalline materials, the localized internal stresses generated by slip at grain boundaries depend on dislocation distribution and the ability to cross slip, i.e., slip character. The importance of deformation behavior, as influenced by solute elements and temperature, is discussed in relation to the ductile-to-brittle transition of single-phase solids.


Plastic Strain Flow Stress Shear Zone Slip System Slip Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Griffith, Phil. Trans. Roy. Soc. London Ser. A 221: 163 (1921).CrossRefGoogle Scholar
  2. 2.
    R. C. Ku and T. L. Johnston, Phil. Mag. 9: 231 (1964).CrossRefGoogle Scholar
  3. 3.
    T. L. Johnston, R. J. Stokes, and C. H. Li, Phil. Mag. 7: 23 (1962).CrossRefGoogle Scholar
  4. 4.
    F. J. P. Clarke, R. A. J. Sambell, and M. G. Tattersall, Trans. Brit. Ceram. Soc. 61: 61 (1962).Google Scholar
  5. 5.
    C. J. McMahan Jr., Acta Met. 13: 591 (1965).CrossRefGoogle Scholar
  6. 6.
    B. Allen and A. Moore, The Metallurgy of Beryllium, Institute of Metals (London), Monograph and Report Series No. 28, 1963, p. 163.Google Scholar
  7. 7.
    R. J. Stokes, T. L. Johnston, and C. H. Li, Phil. Mag. 4: 920 (1959).CrossRefGoogle Scholar
  8. 8.
    R. Honda, J. Phys. Soc. Japan 16: 1309 (1961).CrossRefGoogle Scholar
  9. 9.
    D. Hull, Acta Met. 8: 11 (1960).CrossRefGoogle Scholar
  10. 10.
    E. Hornbogen, Trans. AIME 221: 711 (1961).Google Scholar
  11. 11.
    J. J. Gilman, Trans. AIME 212: 783 (1958).Google Scholar
  12. 12.
    A. Deruyttere and G. E. Greenough, J. Inst. Metals 84: 337 (1955–56).Google Scholar
  13. 13.
    A. H. Cottrell, Proc. Roy. Soc. (London) 276A: 1 (1963).Google Scholar
  14. 14.
    R. Von Mises, Z. Angew. Math. Mech. 8: 161 (1928).CrossRefGoogle Scholar
  15. 15.
    G. I. Taylor, J. Inst. Metals 62: 307 (1938).Google Scholar
  16. 16.
    G. W. Groves and A. Kelly, Phil. Mag. 8: 877 (1963).CrossRefGoogle Scholar
  17. 17.
    T. L. Johnston, R. G. Davies, and N. S. Stoloff, Phil. Mag. 12: 305 (1965).CrossRefGoogle Scholar
  18. 18.
    A. J. McEvily and T. L. Johnston, International Conference on Fracture, Sendai (Japan), 1965.Google Scholar
  19. 19.
    A. J. McEvily, R. C. Ku, and T. L. Johnston, in press.Google Scholar
  20. 20.
    R. D. Carnahan, T. L. Johnston, R. J. Stokes, and C. H. Li, Trans. AIME 221: 45 (1961).Google Scholar
  21. 21.
    A. A. Johnson, Acta Met. 8: 737 (1960).CrossRefGoogle Scholar
  22. 22.
    J. J. Gilman, International Conference on Fracture, Sendai (Japan), 1965.Google Scholar
  23. 23.
    R. Armstrong, I. Codd, R. M. Douthwaite, and N. J. Petch, Phil. Mag. 7: 45 (1962).CrossRefGoogle Scholar
  24. 24.
    N. S. Stoloff, R. G. Davies, and R. C. Ku, Trans. AIME 233: 1500 (1965).Google Scholar
  25. 25.
    B. S. Lement, Symp. Role Substructures, ASD-TDR 63–324, 1963, p. 499.Google Scholar
  26. 26.
    A. Gilbert, C. N. Reid, and G. T. Hahn, J. Inst. Metals 92: 351 (1964).Google Scholar
  27. 27.
    E. Smith and P. J. Worthington, International Conference on Fracture, Sendai (Japan), 1965.Google Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • T. L. Johnston
    • 1
  1. 1.Scientific LaboratoryFord Motor CompanyDearbornUSA

Personalised recommendations