Multi-Component Spinodal Decomposition

  • Prabhat K. Gupta
Part of the Materials Science Research book series (MSR, volume 9)


While most materials (metallic, crystalline or glassy) of practical interest are multi-ccmponent and much experimental work has been performed on multi-component systems particularly so in glasses [1–18], the theoretical and analytical efforts to understand the phase separation process, have only recently been directed to multi-component systems [19–25]. Several unproved notions are, however, still frequently assumed in analyzing multi-ccmponent phase separation kinetics. One example [8,12,26] is the statement that “in a two phase region if the tie-lines* do not rotate within the temperature range of interest, then a multi-conponent system behaves like a binary along the tie-line.” This, as we show later (section 3.3) is not true particularly when interpreting the kinetics. Clearly it is of importance to examine the validity of such notions and develop simple characterization of coupling effects in multi-component phase separation.


Phase Separation Spinodal Decomposition Phosphorous Pentoxide Phase Separation Kinetic Generalize Diffusion Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Porai-Koshits and N.S. Andreyev, “Low angle x-ray scattering by sodium boro-silicate glasses.” Trans. Soc. of Glass Tech., XLIII, 235 (1959).Google Scholar
  2. 2.
    R.J. Charles, “Phase separation in Borosilicate Glasses,” J. An. Ceram. Soc. 47 (11), 559 (1964).CrossRefGoogle Scholar
  3. 3.
    W. Haller, “Rearrangement Kinetics of the liquid-liquid immiscible microphases in alkali borosilicate melts”. J. Chem. Phys., 42 (2), 686 (1965).CrossRefGoogle Scholar
  4. 4.
    J.J. Hammel and S.M. Ohlberg, “Light scattering from diffusion controlled phase separation in glass.” J. Appl. Phys., 36 (4), 1442 (1965).CrossRefGoogle Scholar
  5. 5.
    Y. Moriya, D.H. Warrington and R.W. Douglas “A study of meta-stable liquid-liquid immiscibility in some binary and ternary alkali-silicate glasses”. Phys. & Chem. of glasses, 8, 19 (1967).Google Scholar
  6. 6.
    J.J. Hammel, “Direct measurement of homogeneous nucleation rates in a glass forming system.” J. Chem. Phys., 46 (6), 2234 (1967).CrossRefGoogle Scholar
  7. 7.
    R.H. Doremus and A.M. Turkalo, “Phase separation in Pyrex glass” Science, 164 418 (1969).CrossRefGoogle Scholar
  8. 8.
    J. Zarzycki and F. Naudin, “Spinodal decomposition in the B2O3-PbO-Al2O3 system” J. of Non-crystal. Solids, 1, 215 (1969).CrossRefGoogle Scholar
  9. 9.
    D.G. Burnett and R.W. Douglas, “Immiscibility, Nucleation and crystal growth in the Soda-Baria-Silica system.” Disc. Faraday Soc., (50), 200 (1970).CrossRefGoogle Scholar
  10. 10.
    P.F. James and P.W. McMillan “Quantitative measurements of phase separation in glasses using transmission electron microscopy, a study of lithia-silica glasses and the influence of phosphorous pentoxide.” Phys. & Chem. of glasses, 11 (3), 64 (1970).Google Scholar
  11. 11.
    D.G. Burnett and R.W. Douglas “Liquid-liquid phase separation in soda-lime-silica system.” Phys. & Chen. of glasses, 11 (5), 125 (1970).Google Scholar
  12. 12.
    J. Zarzycki and F. Naudin, “Supercritical fluctuations in the B2O3-PbO-Al2O3 system”, J. Non cryst. Solids, 5, 415 (1971).CrossRefGoogle Scholar
  13. 13.
    G.R. Srinivasan, I. Tweer, P.B. Macedo, A. Sarkar and W. Haller, “Phase separation in SiO2-B2O3-Na2O system.” J. Non cryst. Solids; 6, 221 (1971).CrossRefGoogle Scholar
  14. 14.
    O.V. Mazurin and M.V. Streltsina, “Determination of tie-line directions in the metastable phase-separation regions of ternary systems,” J. Noncryst. Solid 11, 199 (1972).CrossRefGoogle Scholar
  15. 15.
    I.S. Patel, P.W. Schmidt and S.M. Ohlberg, “Small-angle x-ray scattering study of phase separation in glasses”, J. of Appl. Phys., 43 (4), 1636 (1972).CrossRefGoogle Scholar
  16. 16.
    R. Nakagawa and T. Izumitani, “Metastable phase separation and crystallization of Li2O-Al2O3 glasses.” J. Non cryst. Solids, 7, 168 (1972).CrossRefGoogle Scholar
  17. 17.
    G.F. Neilson, “Small angle x-ray scattering study of complex particle growth in an MgO-Al2O3- rO2-SiO2 glass”. J. of Appl. Phys., 43 (9), 3728 (1972).CrossRefGoogle Scholar
  18. 18.
    A. Sarkar, P.K. Gupta, G.R. Srinivasan, V. Volterra and P.B. Macedo, “On the determination of spinodal temperature by electron microscopy.” J. Chem. Phys., 59 (8), 4246 (1973).CrossRefGoogle Scholar
  19. 19.
    R.B. Griffiths and J.C. Wheeler, “Critical points in multi-component systems” Phys. Rev. A, 2, 1047 (1970).CrossRefGoogle Scholar
  20. 20.
    D. De Fontaine, “An analysis of clustering and ordering, in multi-ocmponent solid solutions” J. Phys. Chem. of Solids, 33, 297 (1972);CrossRefGoogle Scholar
  21. 20a.
    D. De Fontaine, “An analysis of clustering and ordering, in multi-ocmponent solid solutions” J. Phys. Chem. of Solids, 34, 1285 (1973).CrossRefGoogle Scholar
  22. 21.
    J.E. Morral, “Stability limits for ternary regular system” Acta Met., 20, 1069 (1972).CrossRefGoogle Scholar
  23. 22.
    H. Gaye and C.H.P. Lupis, “On the restrictivity of the thermodynamic conditions for spinodal decomposition in a multi-corrponent system,” Trans. AIME, 245, 2543 (1969).Google Scholar
  24. 23.
    J.E. Morral, “On characterizing stability limits for ternary systems”, Acta Met., 20, 1061 (1972).CrossRefGoogle Scholar
  25. 24.
    G. Bernard, R. Hocine and C.H.P. Lupis, “Thermodynamic conditions for spinodal deconposition in a multi-component system”, Trans. AIME, 239, 1600 (1967).Google Scholar
  26. 25.
    J.S. Kirkaldy and G.R. Purdy, “Diffusion in multi-component metallic systems. X. Diffusion at and near ternary critical states,” Can. J. Phys., 47 865 (1969).CrossRefGoogle Scholar
  27. 26.
    A. Sarkar, G.R. Srinivasan, V. Volterra and P.B. Macedo, “Electron microscope observation of the kinetics of composition fluctuations in the SiO2-B2O3-Na2O-Al2O3 system” Phys. and Chem. of Glasses, 14, (6), 114, (1973).Google Scholar
  28. 27.
    J.E. Morral and J.W. Cahn, “Spinodal decomposition in ternary systems” Acta Met., 19, 1037 (1971).CrossRefGoogle Scholar
  29. 28.
    J.S. Langer, “Statistical methods in the theory of spinodal decomposition” Acta Met. 21, 1649 (1973).CrossRefGoogle Scholar
  30. 29.
    J.S. Langer, “Metastable States,” Physica, 73, 61, (1974).CrossRefGoogle Scholar
  31. 30.
    P.K. Gupta and A.R. Cooper “The [D] matrix for multi-component diffusion” Physica, 54, 39 (1971).CrossRefGoogle Scholar
  32. 31.
    A.R. Cooper and P.K. Gupta “Analysis of diffusion controlled crystal growth in multi-component systems” Adv. in Nucleation and crystallization in glasses; Ed L. L. Hench, S.W. Frieman, Am. Ceram. Soc. (1972).Google Scholar
  33. 32.
    B. Widom, “Critical phenomena in the surface tension of fluids in phase transitions and critical phenomena” Ed. C. Domb and M.S. Green. Acad. Press (1972).Google Scholar
  34. 33.
    J.W. Cahn and J.E. Hilliard, “Free energy of a non-uniform system” J. Chem. Phys., 28, (2), 258, (1958).CrossRefGoogle Scholar
  35. 34.
    J.L. Meijering, “Segregation in regular ternary solutions” Philips Res. Rep., 5, 333 (1950).Google Scholar
  36. 35.
    J.W. Cahn, “On spinodal decomposition,” Acta Met., 9, 795 (1961).CrossRefGoogle Scholar
  37. 36.
    See for example; S.R. de Groot and P. Mazur, “Non-equilibrium thermodynamics” North-Holland Publ. Co., (1962).Google Scholar
  38. 37.
    B. Widom, “Tri-critical points in three and four-cemponent mixtures” J. Phys. Chem., 77 (18), 2196 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Prabhat K. Gupta
    • 1
  1. 1.Vitreous State LaboratoryThe Catholic University of AmericaUSA

Personalised recommendations