Irreversible Thermodynamics in Materials Problems

  • F. A. Nichols
  • G. P. Marino
  • H. Ocken
Part of the Materials Science Research book series (MSR, volume 9)


The science of thermodynamics is concerned with systems at equilibrium and with processes which occur reversibly; i.e., at every stage of such a process the system is in equilibrium with its surroundings and any change can be reversed by infinitesimal changes in the external systems. Such idealized processes enable one to determine new equilibrium values of such macroscopic state properties as energy, entropy, temperature, and pressure when a system changes from one equilibrium state to another. Naturally occurring processes are, in general, not reversible since there are always sources of dissipation occurring such as heat losses due to friction or electrical resistance. Although thermodynamics allows one to compute the new state variables for any process by devising a reversible process resulting in the same final state, it cannot, in principle, aid in the determination of the rate of such processes. Irreversible thermodynamics is concerned with the study of such rates in a framework consistent with known phencmeno-logical rate laws and the basic postulates of equilibrium statistical thermodynamics.


Thermal Gradient Fuel Element Dislocation Loop Vapor Transport Irreversible Thermodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Oasager, Phys. Rev. 37, 405 (1931).CrossRefGoogle Scholar
  2. 2.
    S.R. DeGroot, “Therniodynamics of Irreversible Processes”, 1st ed., Nörth-Holland Publishing Co., Amsterdam, and Interscience Publishers, New York (1952).Google Scholar
  3. 3.
    I. Prigogine, “Introduction to the Thermodynamics of Irreversible Processes,” 3rd ed., John Wiley and Sons, New York (1955).Google Scholar
  4. 4.
    G.P. Marino, Nucl. Sci. and Eng., 49, 93 (1972).Google Scholar
  5. 5.
    D.R. deHalas and G.R. Ebrn, J. Nucl. Mat., 8, 207 (1963).CrossRefGoogle Scholar
  6. 6.
    D.R. O’Boyle, F.L. Brown, and J.E. Sanecki, J. Nucl. Mat., 29, 27 (1969).CrossRefGoogle Scholar
  7. 7.
    H. Beisswenger, M. Bober, and G. Schumacher, J. Nucl. Mat., 21, 38 (1967).CrossRefGoogle Scholar
  8. 8.
    M. Bober, C. Sari, and G. Schumacher, Trans. Amer. Nucl. Soc., 12, 603 (1969).Google Scholar
  9. 9.
    K.B. Alberman, R.C. Blakey, and J.S. Anderson, J. Chan. Soc., 1352 (1951).Google Scholar
  10. 10.
    N. Oi and J. Takagi, Z. Naturf, 19A, 1331 (1964).Google Scholar
  11. 11.
    N.G. Demas, R. Natesh and C.W. Maynard, Trans. Amer. Nucl. Soc., 14, 593 (1971).Google Scholar
  12. 12.
    F.R. Winter and E.G. Drickamer, J. Chem. Phys., 24, 492 (1956).CrossRefGoogle Scholar
  13. 13.
    D. Jaffe and P.G. Shewnon, Acta Met., 12, 515 (1964).CrossRefGoogle Scholar
  14. 14.
    A.B. Lidiard, “Thermodynamics,” Vol. II, Int. Atomic Energy Agency, Vienna (1966).Google Scholar
  15. 15.
    P.G. Shewmon, “Diffusion in Solids,” McGraw-Hill, New York (1963).Google Scholar
  16. 16.
    R.O. Meyer, J. Nucl. Mater., 50, 11 (1974).CrossRefGoogle Scholar
  17. 17.
    F.A. Nichols, Acta Met. 20, 207 (1972).CrossRefGoogle Scholar
  18. 18.
    J.D. Eshelby, Solid State Physics 3 79 (1956).CrossRefGoogle Scholar
  19. 19.
    H.B. Huntington and P.S. Ho, J. Phys. Soc. Japan 18 Suppl. II 202 (1963).Google Scholar
  20. 20.
    H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Second Edition, p. 426, Oxford University Press (1959).Google Scholar
  21. 21.
    R.S. Barnes and D.J. Mazey, Proc. Roy. Soc. A275 47 (1963).Google Scholar
  22. 22.
    E.G. Selleck and M.A. DeCrescente, Pratt-Whitney Aircraft Co., (USA) Report PWAC-476 (1965).Google Scholar
  23. 23.
    Manuel Rodriguez Perazza and Monte V. Davis, Trans. Amer. Nucl. Soc. 16 73 (1973).Google Scholar
  24. 24.
    B.J. Buescher and R.O. Meyer, J. Nucl. Mater. 48 143 (1973).CrossRefGoogle Scholar
  25. 25.
    L.C. Michels and R.B. Poeppel, J. Appl. Phys. 44 1003 (1973).CrossRefGoogle Scholar
  26. 26.
    C.C. Dollins, J. Nucl. Mater. 49 10 (1973/74).CrossRefGoogle Scholar
  27. 27.
    F.A. Nichols, J. Nucl. Mater. 30 143 (1969).CrossRefGoogle Scholar
  28. 28.
    J. Narayan and J. Washburn, Phil. Mag. 26 1179 (1972).CrossRefGoogle Scholar
  29. 29.
    J.A. Turhbull, Phil. Mag. 21 83 (1970).CrossRefGoogle Scholar
  30. 30.
    A.J.E. Foreman, Atonic En. Res. Estab. Harwell, Didcot, Berks., England Report No. AERE 4654 (1964).Google Scholar
  31. 31.
    H.B. Huntington, J. Phys. Chem. Solids 29 1641 (1968).CrossRefGoogle Scholar
  32. 32.
    J.M. Blakely, Progress Mater. Sci. 10 No. 4395 (1963).CrossRefGoogle Scholar
  33. 33.
    I. Cohen, Westinghouse Bettis Atom. Power Lab., U.S.A., Report MPD-TM-1092 (1973).Google Scholar
  34. 34.
    W. Oldfield and J.B. Brown, Mater. Sci. and Eng. 64 361 (1970).Google Scholar
  35. 35.
    C. Bonchi and C. Sari, J. Nucl. Mater. 50 91 (1974)”.CrossRefGoogle Scholar
  36. 36.
    H.E. Cline and T.R. Anthony, Acta Mat. 19 175 (1971).CrossRefGoogle Scholar
  37. 37.
    T.R. Anthony and R.A. Sigsbee, Acta Mat. 19 1029 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • F. A. Nichols
    • 1
  • G. P. Marino
    • 1
  • H. Ocken
    • 1
  1. 1.Bettis Atomic LaboratoryWestinghouse CorporationPittsburghUSA

Personalised recommendations