Ambipolar Diffusion and its Application to Diffusion Creep

  • R. S. Gordon
Part of the Materials Science Research book series (MSR, volume 9)


A diffusional creep theory which takes into account the simultaneous occurrence of lattice and grain boundary diffusion for both anions and cations was developed for a polycrystalline ionic compound. The effects of grain size, soluble cation impurities of variable valence, and oxygen partial pressure on the relative contributions of lattice and grain boundary diffusion of the different ionic species were analyzed. Diffusional creep data for pure and doped polycrystalline MgO, Al2O3 and BeO were analyzed in terras of various limiting conditions of the general creep theory.


Oxygen Partial Pressure Creep Rate Dopant Level Boundary Diffusion Lattice Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.R.N. Nabarro, pp. 75–90 in Report of a Conference on Strength of Solids, University of Bristol, H. Willis Physical Laboratory, Bristol, England, 1947, Physical Society of London, 1948.Google Scholar
  2. 2.
    Conyers Herring, “Diffusional Viscosity of a Polycrystalline Solid,” J. Appl. Phys. 21 (5), 437–45 (1950).CrossRefGoogle Scholar
  3. 3.
    R.L. Coble, “Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials,” J. Appl. Phys. 34 (6), 1679–82 (1963).CrossRefGoogle Scholar
  4. 4.
    R. Raj and M.F. Ashby, “Grain Boundary Sliding and Diffusional Creep,” Trans. AIME 2 (4), 1113–27 (1971).Google Scholar
  5. 5.
    A.L. Ruoff, “Mass Transfer Problems in Ionic Crystals with Charge Neutrality,” J. Appl. Phys. 36 (9), 2903–2907 (1965).CrossRefGoogle Scholar
  6. 6.
    D.W. Readey, “Chemical Potentials and Initial Sintering in Pure Metals and Ionic Compounds,” J. Appl. Phys. 37 (6) 2309–12 (1966).CrossRefGoogle Scholar
  7. 7.
    D.W. Readey, “Mass Transport and Sintering in Impure Ionic Solids,” J. Amer. Ceram. Soc., 49 (7) 366–69 (1966).CrossRefGoogle Scholar
  8. 8.
    Ronald S. Gordon, “Mass Transport in the Diffusional Creep of Ionic Solids,” J. Alter. Ceram. Soc. 56 (3), 147–152 (1973).CrossRefGoogle Scholar
  9. 9.
    R.E. Howard and A.B. Lidiard, “Matter Transport in Solids,” Rep. Progr. Phys. 27, 161–240 (1964).CrossRefGoogle Scholar
  10. 10.
    D. Lynn Johnson, “Non-Stoichicmetry and Doping in the Sintering of Oxides, ”(private communication).Google Scholar
  11. 11.
    G.R. Terwilliger, H.K. Bowen, and R.S. Gordon, “Creep of Polycrystalline MgO and MgO-Fe2O3 Solid Solutions at High Tonperatures,” J. Amer. Ceram. Soc. 53 (5), 241–51 (1970).CrossRefGoogle Scholar
  12. 12.
    R.S. Gordon and G.R. Terwilliger, “Transient Creep in Fe-Doped Polycrystalline MgO,” J. Amer. Ceram. Soc. 55 (9), 450–55 (1972).CrossRefGoogle Scholar
  13. 13.
    P.L. Farnsworth and R.L. Goble, “Deformation Behavior of Dense Polycrystalline SiC,” J. Amer. Ceram. Soc. 55 (9), 264–68 (1966).CrossRefGoogle Scholar
  14. 14.
    A.L. Ruoff, “Creep by Grain Boundary Diffusion,” Report No. 298, Materials Science Center, Cornell University, January 1965.Google Scholar
  15. 15.
    Willis L. Barmore and Richard R. Vandervoort, “High Temperature Plastic Deformation of Polycrystalline Berryllium Oxide,” J. Amer. Ceram. Soc. 48 (10), 499–505 (1965).CrossRefGoogle Scholar
  16. 16.
    Glenn W. Hollenberg and Ronald S. Gordon, “Effect of Oxygen Partial Pressure on Creep of Polycrystalline Al2O3 Doped with Cr, Fe or Ti,” J. Arier. Ceram. Soc. 56 (3), 140–147 (1973).CrossRefGoogle Scholar
  17. 17.
    R.C. Folweiler, “Creep Behavior of Pore Free Polycrystalline Aluminum Oxide,” J. Appl. Phys. 32 (5), 773–78 (1961).CrossRefGoogle Scholar
  18. 18.
    R.T. Tremper, R.A. Giddings, J.D. Hodge and R.S. Gordon, “The Creep of Polycrystalline MgO-FeO-Fe2O3 Solid Solutions,” J. Amer. Ceram. Soc. 57 (10) (1974).Google Scholar
  19. 19.
    W.D. Kingery and E.D. Montrone, “Diffusional Creep in Polycrystalline Sodium Chloride,” J. Appl. Phys. 35 (8), 2412–13 (1965).CrossRefGoogle Scholar
  20. 20.
    Alain Mocellin and W.D. Kingery, “Creep Deformation in MgO Saturated Large Grain Size Al2O3,” J. Amer. Ceram. Soc. 54 (7), 339–41 (1971).CrossRefGoogle Scholar
  21. 21.
    W.H. Rhodes and R.E. Carter, “Cationic Self-Diffusion in Calcia-Stabilized Zirconia,” J. Amer. Ceram. Soc. 49 (5), 244–248 (1966).CrossRefGoogle Scholar
  22. 22.
    Y. Oishi and W.K. Kingery, “Oxygen Diffusion in Periclase Crystals,” J. Chem. Phys. 33 (3), 905–906 (1960).CrossRefGoogle Scholar
  23. 23.
    D.R. McKenzie, A.W. Searcy, J.B. Eblt and R.H. Condit, “Oxygen Grain Boundary Diffusion in MgO,” J. Amer. Ceram. Soc. 54 (4), 188–90 (1971).CrossRefGoogle Scholar
  24. 24.(a)
    Shimichi Shiraski and Yasumichi Oishi, “Role of Grain Boundaries in Oxygen Self Diffusion in Polycrystalline MgO,” Japan J. Appl. Phys. 10, 1109–1110 (1971).CrossRefGoogle Scholar
  25. 24.(b)
    H. Hasimoto, M. Hama, and S. Shirasaki, “Preferential Diffusion of Oxygen Along Grain Boundaries in Polycrystalline MgO,” J. Appl. Phys. 43 (11), 4828–4829 (1972).CrossRefGoogle Scholar
  26. 24.(c)
    S. Shirasaki and M. Hama, “Oxygen Diffusion Characteristics of Loosely Sintered Polycrystalline MgO,” Chemical Physics Letters 20 (4), 361–5 (1973).CrossRefGoogle Scholar
  27. 25.
    G.R. Terwilliger and R.S. Gordon, “Correlations Between Models for Time-Dependent Creep with Concurrent Grain Growth,” J. Amer. Ceram. Soc. 52 (4), 218–219 (1969).CrossRefGoogle Scholar
  28. 26.
    R.S. Gordon and J.D. Hodge, “Analysis of Mass Transport in the Diffusional Creep of Polycrystalline MgO-FeO-Fe2O3 Solid Solutions,” J. Mater. Sci. (in press).Google Scholar
  29. 27.
    B.J. Wuensch, W.C. Steele, and T. Vasilos, “Cation Self-diffusion in Single-Crystal MgO,” J. Chem. Phys. 58, 5258–5266 (1973).CrossRefGoogle Scholar
  30. 28.
    R. Linder and G.D. Parfitt, “Diffusion of Radioactive Magnesium in Magnesium Oxide Crystals,” J. Chem. Phys. 26, 182 (1957).CrossRefGoogle Scholar
  31. 29.
    Y. Oishi and W.D. Kingery, “Self-Diffusion of Oxygen in Single Crystal and Polycrystalline Aluminum Oxide,” J. Chem. Phys. 33 (2), 480–86 (1960).CrossRefGoogle Scholar
  32. 30.
    A.E. Paladino and R.L. Coble, “Effect of Grain Boundaries on Diffusion Controlled Process in Aluminum Oxide,” J. Amer. Ceram. Soc. 46 (3) 133–36 (1963).CrossRefGoogle Scholar
  33. 31.
    R.E. Mistier and R.L. Coble, “Rate Determining Species in Diffusion-Controlled Processes in Al2O3,” J. Amer. Ceram. Soc. 54 (1), 60–61 (1971).CrossRefGoogle Scholar
  34. 32.
    W.D. Kingery, “Plausible Concepts Necessary and Sufficient for Interpretation of Ceramic Grain-Boundary Phenomena: II Solute Segregation, Grain-Boundary Diffusion, and General Discussion,” J. Amer. Ceram. Soc. 57 (2), 74–83 (1974).CrossRefGoogle Scholar
  35. 33.
    A.H. Heuer, R.M. Cannon, and N.J. Tighe; pp. 339–65 in Ultrafine-Grain Ceramics, Edited by T.J. Burke, N.L. Reed, and Volker Weiss, Syracuse University Press, Syracuse, N.Y. 1970.Google Scholar
  36. 34.
    P. Lessing (Private Communication).Google Scholar
  37. 35.
    R.J. Brook, J. Yee, and F.A. Kroger, “Electrochemical Cells and Electrical Conduction of Pure and Doped Al2O3,” J. Amer. Ceram. Soc. 54 (9), 444–51 (1971).CrossRefGoogle Scholar
  38. 36.
    Carl F. Cline, Herbert W. Newkirk, Willis L. Barmore and Richard R. Vandervoort, “Creep-Electrical Conductivity Correlations in Polycrystalline Berryllium Oxide,” J. Anaer. Ceram. Soc. 50 (5), 221–222 (1967).CrossRefGoogle Scholar
  39. 37.
    Willis L. Barmore and Richard R. Vandervoort, “High Temperature Creep and Dislocation Etch Pits in Polycrystalline Berry1lium Oxide,” J. Amer. Ceram. Soc. 50 (6), 316–320 (1967).CrossRefGoogle Scholar
  40. 38.
    C.B. Alcock and G.P. Stavropoulos, “Ionic Transport numbers of Group IIa Oxides Under Low Oxygen Potentials,” J. Amer. Ceram. Soc. 54 (9) 436–43 (1971).CrossRefGoogle Scholar
  41. 39.
    K. Kitazawa and R.L. Coble, “Electrical Conduction in Single Crystal and Polycrystalline Al2O3 at High Temperatures, ”J. Amer. Ceram. Soc. 57 (16) 245–250 (1974).CrossRefGoogle Scholar
  42. 40.
    Kent W. Hansen and Ivan B. Cutler, “Electrical Conductivity in Fe1-xO-MgO Solid Solutions,” J. Amer. Ceram. Soc. 49 (2), 100–102 (1966).CrossRefGoogle Scholar
  43. 41.
    K.L. Kliewer and J.S. Koehler, “Space Charge in Ionic Crystals I: General Approach with Application to NaCl,” Phys. Rev. 140, (4A) A1226–A1240 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. S. Gordon
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations