Determination of Phase Diagrams using Diffusion Techniques

  • Joseph A. Pask
  • İlhan A. Aksay
Part of the Materials Science Research book series (MSR, volume 9)


Semi-infinite diffusion couple arrangements between two condensed phases can be readily analyzed with the use of the electron beam microprobe analyzer to determine the composition profiles in the two end phases of the couple arrangement and in any intermediate phases that may grow between the end phases. When the reactions at the interfaces are diffusion controlled, chemical equilibrium exists at each interface and each interfacial composition then corresponds to either a liquidus or a solidus composition, and these interfacial compositions, with the aid of microstructural observations, can be used in the construction of the stable and/or metastable equilibrium phase diagrams involving the end phases of the diffusion couple. This technique is applied to the study of phase equilibria in the SiO2-Al2O3 system.


Phase Diagram Diffusion Couple Diffusion Zone Interfacial Composition Incongruent Melting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. MacChesney and P.E. Rosenberg, in “Phase Diagrams, Materials Science and Technology,” (Allen M. Alper, ed.) Vol. 1, pp. 113–165, Academic Press, New York (1970).Google Scholar
  2. 2.
    Arnold Reisman, “Phase Equilibria, Basic Principles, Applications, Experimental Techniques,” Academic Press, New York (1970).Google Scholar
  3. 3.
    C. Wagner, in “Diffusion in Solids, Liquids and Gases,” (W. Jost, author) p. 75, Academic Press, New York (1969).Google Scholar
  4. 4.
    J.S. Kirkaldy, Diffusion in Multicomponent Metallic Systems, III. The Motion of Planar Phase Interfaces, Can. J. Phys. 36, 917–25 (1958).CrossRefGoogle Scholar
  5. 5.
    G.V. Kidson, Some Aspects of the Growth of Diffusion Layers in Binary Systems, J. Nucl. Mater. 3, 21–29 (1961).CrossRefGoogle Scholar
  6. 6.
    G.B. Gibbs, Diffusion Layer Growth in a Binary System, J. Nucl. Mater. 20, 303–306 (1966).CrossRefGoogle Scholar
  7. 7.
    J.E. Dorn, J.T. Gier, L.M.K. Boelter, and N.F. Ward, in “Symposium on Surface Treatment of Metals,” pp. 166–177, American Society for Metals, Cleveland (1941).Google Scholar
  8. 8.
    F.N. Rhines, “Phase Diagrams in Metallurgy, Their Development and Application,” pp. 50–52, 107–109, and 156–57, McGraw-Hill Book Co., New York (1956).Google Scholar
  9. 9.
    T. Heumann and P. Lohmann, Uber die Diffusion in der β-Phase des Systems Silber-Zink, Z. Elektrochem. 59, 849–60 (1955).Google Scholar
  10. 10.
    T. Heumann and F. Heinemann, Mehrphasendiffusion in System Kupfer-Antimon, Z. Elektrochem. 60, 1160–69 (1956).Google Scholar
  11. 11.
    N. Swindells, the Determination of Equilibrium Diagrams by Electron-Probe Microanalysis, J. Inst. Metals 90, 167–71 (1962);Google Scholar
  12. 11a.
    J.I. Goldstein and R.E. Ogilvie, in “Gongres International sur e Optique des Rayond X et la Microanalyse,” (R. Castaing, et al., eds) 4th, pp. 594–602, Orsay, France (1965);Google Scholar
  13. 11b.
    Y. Adda and J. Philibert, in “La Diffusion dans les Solides,” p. 618, Presses Universitaires de France, Paris (1966);Google Scholar
  14. 11c.
    J.R. Eifert, D.A. Chatfield, G.W. Powell, and J.W. Spretnak, Interface Compositions, Motion, and Lattice Transformations in Multi-phase Diffusion Couples, Trans. AIME 242, 66–71 (1968);Google Scholar
  15. 11d.
    T. Nishizawa and A. Chiba, Interface Equilibrium in Diffusion Couples, Nippon Kinzoku Gakkaishi 33, 869–70 (1969);Google Scholar
  16. 11e.
    G.N. Ronami and S.M. Kuznetsova, in “Teor, Eksp. Metody Issled. Diagram Sostoyaniya Metal. Sist., Dokl. Soveshch.,” (N.V. Ageev, ed.) pp. 172–27, Izd, “Nauka,” Moscow, USSR (1969);Google Scholar
  17. 11f.
    J.D. Braun, Local Equilibrium and Diffusion in Multiphase Couples, Ph. D. Thesis, The Ohio State University, Columbus (1971);Google Scholar
  18. 11g.
    C.P. Heijwegen and G.D. Rieck, Determination of the Phase Diagram of the Mo-Co System Using Diffusion Couples, J. Less-Common Met. 34 309–14 (1974).CrossRefGoogle Scholar
  19. 12.
    J.M. Short and R. Roy, Use of Interdiffusion to Determine Crystalline Solubility in Alkali Halide Systems, J. Am. Ceram. Soc. 47, 149–51 (1964);CrossRefGoogle Scholar
  20. 12a.
    G.W. Brindley and R. Hayami, Kinetics and Mechanism of Formation of Forsterite (Mg2SiO4) by Solid State Reaction of MgO and SiO2, Phil. Mag. 12, 505–14 (1965);CrossRefGoogle Scholar
  21. 12b.
    S.L. Blank and J.A. Pask, Solubility Limits in the MgO-Fe2O3 System as Determined by Diffusion, J. Am. Ceram. Soc. 52, 460–61 (1969);CrossRefGoogle Scholar
  22. 12c.
    C. Greskovich and V.S. Stubican, Interdiffusion Studies in the System MgO-Cr2O3, J. Phys. Chem. Solids30 909–17 (1969),CrossRefGoogle Scholar
  23. 12d.
    C. Greskovich and V.S. Stubican, Change of Molar Volume and Interdiffusion Coefficients in the System MgO-Cr2O3, J. An. Ceram. Soc. 53, 251–53 (1970);CrossRefGoogle Scholar
  24. 12e.
    M. Appel and J.A. Pask, Interdiffusion and Moving Boundaries in NiO-CaO and NiO-MgO Single-Crystal Couples, J. Am. Ceram. Soc. 54, 152–58 (1971);CrossRefGoogle Scholar
  25. 12f.
    W.P. Whitney, II, and V.S. Stubican, Interdiffusion Studies in the System MgO-Al2O3, J. Phys. Chem. Solids 32, 305–12 (1971);CrossRefGoogle Scholar
  26. 12g.
    R. Derie and L.A. Kusman, Diffusion and Reaktionen im System MgO-Fe2O3, Ber. Dt. Keram. Ges. 48, 381–84 (1971);Google Scholar
  27. 12h.
    M. O’Keeffe and T.J. Ribble, Interdiffusion and the Solubility Limits of Cr2O3 in the Rutile Phase of TiO2, J. Solid State Chem. 4, 351–56 (1972).CrossRefGoogle Scholar
  28. 13.
    R.F. Davis and J.A. Pask, Diffusion and Reaction Studies in the System M2O3-SiO2, J. Am. Ceram. Soc. 55, 525–31 (1972).CrossRefGoogle Scholar
  29. 14.
    I.A. Aksay and J.A. Pask, The Silica-Alumina System: Stable and Metastable Equilibria at 1.0 Atmosphere, Science 183, 69–71 (1974),Stable and Metastable Equilibria in the SiO2-Al2O3 System, Submitted to J. Am. Ceram. Soc. CrossRefGoogle Scholar
  30. 15.
    N.L. Bowen and J.W. Greig, The System: Al2O3-SiO2, J. Am. Ceram. Soc., 7, 238–54 and 410 (1924).CrossRefGoogle Scholar
  31. 16.
    N.A. Toropov and F.Y. Galakhov, New Data on the System Al2O3-SiO2, Dokl. Akad. Nauk SSSR 78, 299–302 (1951);Google Scholar
  32. 16a.
    N.E. Filonenko and I.V. Lavrov, On the Problem of the Behavior of Mullite at its Malting Point, Dokl. Akad. Nauk SSSR 89, 141–42 (1953);Google Scholar
  33. 16b.
    16b. P.P. Budnikov, S.G. Tresvyatski, and V.I. Kushakovski, Making the Phase Diagram of the System Al2O3-SiO2 More Precise, Dokl. Akad. Nauk SSSR 93, 281–83 (1953); 16c. F.Y. Galakhov, Research into the Crystallisation Domain of Mullite in Alumino-Siliceous Ternary Systems, Bull. Fr. Ceram. Soc. 1958, 11–16;Google Scholar
  34. 16c.
    J.H. Welch, A New Interpretation of the Mullite Problem, Nature 186, 545–46 (1960);CrossRefGoogle Scholar
  35. 16d.
    J.H. Welch, Observations on Composition and Malting Behaviour of Mullite, in “Transactions of the VIIth International Ceramic Congress,” pp. 197–206, London (1960);Google Scholar
  36. 16e.
    H.R. Muller, The Solidification Behavior of Mullite in Bulk, Ber. Dt. Keram. Ges. 40, 316–19 (1963);Google Scholar
  37. 16f.
    N.A. Toropov and F.Y. Galakhov, The SiO2-Al2O3 System, in “Eksperiment v Tekhn. Mineralog. i Petrogr., po Materialam Soveshch.,” 7th, pp. 3–8, Lvov, USSR (1966);Google Scholar
  38. 16g.
    T. Horibe and S. Kuwabara, Thermo-Analytical Investigation of Phase Equilibria in the Al2O3-SiO2 System, Bull. Chem. Soc. Japan 40, 972–82 (1967);CrossRefGoogle Scholar
  39. 16h.
    G. Rehfeld and H.E. Schwiete, Recent Results on the Malting Behavior of Mullite, Ber. Dt. Keram. Ges. 48, 258–61 (1971).Google Scholar
  40. 17.
    G. Tromel, K.-H. Obst, K. Konopicky, H. Bauer, and I. Patzak, Investigations in the SiO2-Al2O3 System, Ber. Dt. Keram. Ges. 34, 397–402 (1957);K. Konopicky, Contribution to the Study of the Al2O3-SiO2 System, Bull. Fr. Ceram. Soc. 1956, 3–6;Google Scholar
  41. 17a.
    G. Tromel, in “The Physical Chemistry of Steelmaking,” (J.F. Elliott, ed.) pp. 77–78, MIT Press, and John Wiley and Sons, New York (1958);Google Scholar
  42. 17b.
    K. Konopicky, Remarks on the Equilibrium Diagram Al2O3-SiO2, Ber. Dt. Keram. Ges. 40, 286 (1963).Google Scholar
  43. 18.
    S. Aramaki and R. Roy, The Mullite-Corundum Boundary in the Systems MgO-Al2O3-SiO2 and CaO-Al2O3-SiO2, J. Am. Ceram. Soc. 42, 644–45 (1959),CrossRefGoogle Scholar
  44. 18a.
    S. Aramaki and R. Roy, Revised Equilibrium Diagram for the System Al2O3-SiO2, Nature 184, 631–32 (1959),CrossRefGoogle Scholar
  45. 18b.
    S. Aramaki and R. Roy, Revised Phase Diagram for the System Al2O3-SiO2, J. Am. Ceram. Soc. 45, 229–42 (1962).CrossRefGoogle Scholar
  46. 19.
    W.H. Bauer, I. Gordon, and C.H. Moore, Flame-Fusion Synthesis of Mullite Single Crystals, J. Am. Ceram. Soc. 33, 140–43 (1950);CrossRefGoogle Scholar
  47. 19a.
    W.H. Bauer and I. Gordon, Flame-Fusion Synthesis of Several Types of Silicate Structures, J. Am. Ceram. Soc. 34, 250–54 (1951).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Joseph A. Pask
    • 1
  • İlhan A. Aksay
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Xerox CorporationWebsterUSA

Personalised recommendations