The High-Temperature Oxidation of Hot-Pressed Silicon Carbide

  • J. W. Hinze
  • W. C. Tripp
  • H. C. Graham
Part of the Materials Science Research book series (MSR, volume 9)


For the past several years, we have been studying the oxidation behavior of a number of silicon-based materials, the aim being to define the rate-determining mechanism of oxidation. These materials have a bright future in high-temperature energy systems such as MHD generators, rocket engines, re-entry vehicles, and advanced air-breathing propulsion systems. Desirable properties include retained strength at elevated temperatures, chemical inertness, thermal stability, and high strength-to-weight ratio.


Activation Energy Silicon Carbide Oxide Scale Oxidation Kinetic Oxidation Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.E. Deal and A.S. Grove, J. Appl. Phys.36, 3770 (1965).CrossRefGoogle Scholar
  2. 2.
    A.G. Revesz and R.J. Evans, J. Phys. Chan. Solids30, 551 (1969).CrossRefGoogle Scholar
  3. 3.
    K. Motzfeldt, Acta Chem. Scand.18, 1596 (1964).CrossRefGoogle Scholar
  4. 4.
    P.J. Jorgensen, M.E. Wadsworth, and I.B. Cutler, J. An. Ceram. Soc.42, 613 (1959).CrossRefGoogle Scholar
  5. 5.
    R.F. Adamsky, J. Phys. Chem.63, 305 (1959).CrossRefGoogle Scholar
  6. 6.
    T. Nakatogawa, J. Chem. Soc. Japan, Ind. Chan. Sect.57, 348 (1954).Google Scholar
  7. 7.
    W.W. Pultz, J. Phys. Chem.71, 4456 (1967).CrossRefGoogle Scholar
  8. 8.
    G. Ervin Jr., J. Am. Ceram. Soc.41, 347 (1958).CrossRefGoogle Scholar
  9. 9.
    I.A. Ygvorskii, V.I. Elchin, G.G. Gnesin, and G.S. Oleinik, Poroshkowgya Metallurgiya1, 77 (1968).Google Scholar
  10. 10.
    D.D. Khrycheva and R.I. Bresker, Ogneupory34, 57 (1969).Google Scholar
  11. 11.
    J.E. Antill and J.B. Warburton, AGARD Conference on Reactions between Gases and Solids, Wright-Patterson Air Force Base, Ohio, 1969.Google Scholar
  12. 12.
    H.C. Graham, W.C. Tripp, and H.H. Davis, in “Progress in Vacuum Microbalance Techniques” (T. Gast and E. Robens, ed.) Vol. 1, pp. 125–143, Heyden and Son, Ltd., New York (1972).Google Scholar
  13. 13.
    F.J. Norton, Nature191, 701 (1961).CrossRefGoogle Scholar
  14. 14.
    E.W. Sucov, J. Am. Ceram. Soc.46, 14 (1963).CrossRefGoogle Scholar
  15. 15.
    P. Kofstad, “High Temperature Oxidation of Metals,” John Wiley and Sons, Inc., New York (1966), p. 125.Google Scholar
  16. 16.
    R.H. Doremus, in “Modern Aspects of the Vitreous State” (J.D. Mackenzie, ed.) Vol. 2, pp. 1–71, Butterworths, Washington (1962).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. W. Hinze
    • 1
  • W. C. Tripp
    • 1
  • H. C. Graham
    • 2
  1. 1.Systems Research Laboratories, Inc.DaytonUSA
  2. 2.Aerospace Research LabsWright-Patterson AFBUSA

Personalised recommendations