Advertisement

Mass Transport Phenomena in Oxidation of Metals

  • Per Kofstad
Part of the Materials Science Research book series (MSR, volume 9)

Abstract

Mass transport phenomena in oxidation of metals may involve a number of processes: solid state diffusion of the reactants through continuous oxide scales; gaseous transport across pores or voids in the scales; oxygen diffusion into the base metal and internal oxidation of the least noble alloy components; evaporation of oxides, transport through a gas boundary layer next to the metal, etc. In the present context the discussion is limited to high-temperature oxidation of unalloyed metals governed by volume/lattice diffusion through compact scales. Parabolic oxidation rate data are discussed in terms of the Wagner theory and are correlated with defect structures and independently measured transport properties of the corresponding oxides; oxidation of copper, cobalt, iron, nickel, and silicon is discussed in more detail. Possible effects of impurities on parabolic oxidation are discussed, and cases where electron transport through the scale may be a rate-governing factor is briefly considered.

Keywords

Oxide Scale Oxygen Pressure Tracer Diffusion Parabolic Rate Constant Tracer Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kubaschewski and B.E. Hopkins, “Oxidation of Matals and Alloys”, Butterworths, London, 1962.Google Scholar
  2. 2.
    K. Hauffe, “Oxidation of Metals”, Plenum Press, New York, 1965.Google Scholar
  3. 3.
    J. Benard, “Oxydation des Metaux”, Gauthier-Villars et Cie., Paris, 1962.Google Scholar
  4. 4.
    P. Kofstad, “High-Temperature Oxidation of Metals” Wiley, New York, 1966.Google Scholar
  5. 5.
    C. Wagner, Z. physik. Chem., B21 (1933) 25.Google Scholar
  6. 6.
    C. Wagner, Atom Movements, Amer. Soc. Matals, Cleveland, 1951, p. 153.Google Scholar
  7. 7.
    P. Kofstad, “Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Matal Oxides”, Wiley, New York, 1972.Google Scholar
  8. 8.
    F. Koch and J.B. Cohen, Acta Cryst., B25 (1969) 275.Google Scholar
  9. 9.
    A.Z. Hed, J. Chan. Phys., 50 (1969) 2935.Google Scholar
  10. 10.
    C. Wagner and K. Grünewald, Z. physik. Chem., B40 (1938) 455.Google Scholar
  11. 11.
    J.P. Baur, D.W. Bridges, and W.M. Fasseil Jr., J. Electrochem. Soc., 103 (1956) 273.CrossRefGoogle Scholar
  12. 12.
    W. Feitknecht, Z. Elektrochem., 35 (1929) 142.Google Scholar
  13. 13.
    S. Mrowec and A. Stoklosa, Oxidation of Metals, 3 (1971) 291.CrossRefGoogle Scholar
  14. 14.
    C. Wagner and H. Hammen, Z. phys. Chem., B40 (1938) 197.Google Scholar
  15. 15.
    M. O’Keeffe and W.J. Moore, J. Chem. Phys., 36 (1962) 3009.CrossRefGoogle Scholar
  16. 16.
    W.J. Moore and B. Selikson, J. Chem. Phys., 19 (1951) 1539CrossRefGoogle Scholar
  17. 16a.
    W.J. Moore and B. Selikson, J. Chem. Phys., 20 (1952) 927.CrossRefGoogle Scholar
  18. 17.
    R.E. Carter and F.D. Richardson, Trans. AIME, 200 (1954) 1244;Google Scholar
  19. 17a.
    R.E. Carter and F.D. Richardson, Trans. AIME, 203 (1955) 336.Google Scholar
  20. 18.
    D.W. Bridges, J.P. Baur, and W.M. Fasseil, Jr., J. Electrochem. Soc, 103 (1956) 619.CrossRefGoogle Scholar
  21. 19.
    J.A. Snide, J.R. Myers, and R.K. Saxes, Cobalt, 36 (1967) 157.Google Scholar
  22. 20.
    J. Krüger, A. Melin and H. Winterhager, Cobalt, 33 (1964) 41.Google Scholar
  23. 21.
    J. Paidassi, M.G. Vallee, and P. Pepin, Mem. Scient. Rev. Met., 64 (1965) 789.Google Scholar
  24. 22.
    W.K. Chen, N.L. Peterson, and W.T. Reeves, Phys. Rev., 186 (1969) 887.CrossRefGoogle Scholar
  25. 23.
    E. Fryt. S. Mrowec, and T. Walec, Oxidation of Metals, 7 (1973) 117.CrossRefGoogle Scholar
  26. 24.
    A.J. Rosenberg, J. Electrochem. Soc., 107 (1960) 795.CrossRefGoogle Scholar
  27. 25.
    P. Kofstad and A.Z. Hed, J. Electrochem. Soc, 116 (1969) 229.CrossRefGoogle Scholar
  28. 26.
    G.J. Yurek, J.P. Hirth, and R.A. Rapp, private communication; to be published.Google Scholar
  29. 27.
    P. Vallet and P. Raccah, Mam. Sci. Rev. Met., 62 (1965) 1.Google Scholar
  30. 28.
    I. Bransky and A.Z. Hed, J. Am. Cer. Soc, 51 (1968) 231.CrossRefGoogle Scholar
  31. 29.
    Ph. Desmarescaux, J.P. Bocquet, and P. Lacombe, Bull. Soc. Chim., France, 15 (1965) 1106.Google Scholar
  32. 30.
    L. Himmel, R.F. Mahl, and C.E. Birchenall, Trans AIME, 197 (1953) 822.Google Scholar
  33. 31.
    P. Hembree and J.B. Wagner, Jn. Trans. AIME, 245 (1969) 1547.Google Scholar
  34. 32.
    A.G. Goursat and W.W. Smeltzer, J. Electrochem. Soc, 120 (1973) 390.CrossRefGoogle Scholar
  35. 33.
    A. Rahmel and J. Tobolski, Corr. Science, 5 (1965) 333.CrossRefGoogle Scholar
  36. 34.
    M.H. Davies, M.T. Simnad, and C.E. Birchenall, Trans. Amer. Inst. Min. (Metall.) Engrs., 191 (1951) 889.Google Scholar
  37. 35.
    N.G. Schmal, H. Baumann, and H. Schenk, Archiv Eisenhüttenwesen, 29 (1958) 83.Google Scholar
  38. 36.
    R.M. Doerr, U.S. Bureau of Mines, Report of Investigations 6231, 1963.Google Scholar
  39. 37.
    J.A. Sarteil and C.H. Li, J. Inst. Metals, 90 (1961–62) 92.Google Scholar
  40. 38.
    K. Fueki and J.B. Wagner, Jr., J. Electrochem. Soc, 112 (1965) 384.CrossRefGoogle Scholar
  41. 39.
    M.L. Volpe and J. Reddy, J. Chem. Phys., 53 (1970) 1117.CrossRefGoogle Scholar
  42. 40.
    R. Lindner and A. Akerstrom, Disc. Farad. Soc, 23 (1957) 133.CrossRefGoogle Scholar
  43. 41.
    K. Fueki and J.B. Wagner, Jr., J. Electrochem. Soc, 112 (1965) 970.CrossRefGoogle Scholar
  44. 42.
    J.P. Bocquet, M. Kawahara, and P. Lacombe, C.R. Acad. Sc., Paris 265 (1967) 1318.Google Scholar
  45. 43.
    J.B. Price and J.B. Wagner, Jr., J. Electrochem. Soc., 117 (1970) 242.CrossRefGoogle Scholar
  46. 44.
    B.E. Deal and A.S. Grove, J. Appl. Phys., 36 (1965) 3770.CrossRefGoogle Scholar
  47. 45.
    B.E. Deal, J. Electrochem. Soc, 110 (1963) 527.CrossRefGoogle Scholar
  48. 46.
    P.J. Jorgensen, J. Chem. Phys., 37 (1962) 874.CrossRefGoogle Scholar
  49. 47.
    J.R. Ligenza and W.G. Spitzer, J. Phys. Chem. Sol., 14 (1960) 131.CrossRefGoogle Scholar
  50. 48.
    H.C. Evitts, H.W. Cooper, and S.S. Flaschen, J. Electrochem. Soc, 111 (1964) 688.CrossRefGoogle Scholar
  51. 49.
    E.W. Sucov, J. Am. Cer. Soc, 46 (1963) 14.CrossRefGoogle Scholar
  52. 50.
    R. Haul and G. Dümbgen, Z. Elektrochem., 66 (1962) 636.Google Scholar
  53. 51.
    E.L. Williams, J. Am. Cer. Soc, 48 (1965) 190.CrossRefGoogle Scholar
  54. 52.
    P. Kofstad, Corrosion, 24 (1968) 379.Google Scholar
  55. 53.
    J.H. Eriksen and K. Hauffe, Z. Pys. Chem. Neue Folge, 59 (1968) 332.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Per Kofstad
    • 1
  1. 1.Central Institute for Industrial ResearchBlindern, Oslo 3Norway

Personalised recommendations