Advertisement

Molecular Diffusion in Glasses and Oxides

  • J. E. Shelby
Part of the Materials Science Research book series (MSR, volume 9)

Abstract

The relatively high mobility of helium in some glasses has been known for many years [1,2]. Other gases, such as hydrogen and neon, also exhibit significant mobilities in many caution glasses [1]. This high gas mobility can be of considerable importance in any application where permeation of helium, hydrogen, or neon may affect the performance of a device or system. For example, the ultimate vacuum obtainable in a given vacuum system may be controlled by the permeation of gases through glass components. In other cases, vacuum tubes may become inoperable as a result of gas permeation during storage or use.

Keywords

Molecular Diffusion Glass Network Borate Glass Vitreous Silica Volume Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Doremus, Modern Aspects of the Vitreous State, Vol. 2, p. 1, Butterworths Scientific Publications, London (1962).Google Scholar
  2. 2.
    E.L. Williams, Glass Industry 43, 113 (1962).Google Scholar
  3. 3.
    J.E. Shelby, Phys. Rev. B 4, 2681 (1971).CrossRefGoogle Scholar
  4. 4.
    J.E. Shelby, J. Amer. Ceram. Soc. 54, 125 (1971).CrossRefGoogle Scholar
  5. 5.
    J.E. Shelby, J. Appl. Phys. 44, 4588 (1973).CrossRefGoogle Scholar
  6. 6.
    J.E. Shelby, J. Non-Gryst. Solids, 14, 288 (1974).CrossRefGoogle Scholar
  7. 7.
    J.E. Shelby and S.C. Keeton, J. Amer. Ceram. Soc., 57, 45 (1974).CrossRefGoogle Scholar
  8. 8.
    J.E. Shelby, Sandia Report Number SLL-73–0259, August 1973.Google Scholar
  9. 9.
    R.H. Doremus, Glass Science, John Wiley and Sons, Inc., New York, 1973.Google Scholar
  10. 10.
    R.H. Doremus, J. Amer. Ceram. Soc. 49, 461 (1966).CrossRefGoogle Scholar
  11. 11.
    W.G. Perkins and D.R. Begeal, J. Chem. Phys. 54, 1683 (1971).CrossRefGoogle Scholar
  12. 12.
    J.E. Shelby, Phys. Chen. Glasses 13, 167 (1972).Google Scholar
  13. 13.
    J.E. Shelby, J. Appl. Phys. 45, 2146 (1974).CrossRefGoogle Scholar
  14. 14.
    J.E. Shelby, J. Amer. Ceram. Soc. 55, 195 (1972).CrossRefGoogle Scholar
  15. 15.
    J.E. Shelby, J. Amer. Ceram. Soc. 56, 340 (1973).CrossRefGoogle Scholar
  16. 16.
    J.S. Masaryk, and R.W. Fulrath, J. Chen. Phys., to be published.Google Scholar
  17. 17.
    W.M. Jones, J. Am. Chen. Soc. 75, 3093 (1953).CrossRefGoogle Scholar
  18. 18.
    E.K. Beauchamp, and L.C. Walters, Glass Tech. 11, 139 (1970).Google Scholar
  19. 19.
    J.E. Shelby, J. Amer. Ceram. Soc. 55, 61 (1972).CrossRefGoogle Scholar
  20. 20.
    R.W. Lee, R.C. Frank, and D.E. Swets, J. Chem. Phys. 36, 1062 (1962).CrossRefGoogle Scholar
  21. 21.
    R.W. Lee, J. Chem. Phys. 38, 448 (1963).CrossRefGoogle Scholar
  22. 22.
    R.W. Lee, Phys. Chan. Glasses 5, 35 (1964).Google Scholar
  23. 23.
    R.W. Lee and D.L. Fry, Phys. Chan. Glasses 7, 19 (1966).Google Scholar
  24. 24.
    J.E. Shelby, unpublished.Google Scholar
  25. 25.
    D.L. Fry, P.V. Mohan, and R.W. Lee, J. Opt. Soc. Amer. 50, 1321 (1960).CrossRefGoogle Scholar
  26. 26.
    T.F. Newkirk, F.V. Tooley, J. Amer. Ceram. Soc. 32, 272 (1949).CrossRefGoogle Scholar
  27. 27.
    V.O. Altemose, J. Appl. Phys. 32, 1309 (1961).CrossRefGoogle Scholar
  28. 28.
    F.J. Norton, J. Appl. Phys. 28, 34 (1957).CrossRefGoogle Scholar
  29. 29.
    P.C. Schultz and H.T. Syth, Amorphous Materials, Wiley Inter-science, London, p. 453, (1972).Google Scholar
  30. 30.
    J.E. Shelby, J. Amer. Ceram. Soc. 56 263 (1973).CrossRefGoogle Scholar
  31. 31.
    J.E. Shelby, J. Amer. Ceram. Soc. 57, 260 (1974).CrossRefGoogle Scholar
  32. 32.
    R.J. Charles, J. Amer. Ceram. Soc. 49, 55 (1966).CrossRefGoogle Scholar
  33. 33.
    J.E. Shelby, J. Appl. Phys. 44, 3880 (1973).CrossRefGoogle Scholar
  34. 34.
    R.R. Shaw and Uhlmann, J. Non-Cryst. Solids 1, 474 (1969).CrossRefGoogle Scholar
  35. 35.
    H.M. Laska, R.H. Doremus and P.J. Jorgensen, J. Chan. Phys. 50, 135 (1969).CrossRefGoogle Scholar
  36. 36.
    S.C. Keeton, Sandia Report Number SLL-73–0244, June, 1973.Google Scholar
  37. 37.
    K.P. Srivastava and G.J. Roberts, Phys. Chan. Glasses 11, 21 (1970).Google Scholar
  38. 38.
    L.C. Walters, J. Amer. Ceram. Soc. 53, 288 (1970).CrossRefGoogle Scholar
  39. 39.
    J.E. Shelby and R.C. Wayne, J. Appl. Phys. 49, 2536 (1974).CrossRefGoogle Scholar
  40. 40.
    D.E. Swets, R.W. Lee and R.C. Frank, J. Chem. Phys. 34, 17 (1961).CrossRefGoogle Scholar
  41. 41.
    H.M. Laska and R.H. Doremus, J. Chem. Phys. 51, 1934 (1969).CrossRefGoogle Scholar
  42. 42.
    K.B. McAffee, J. Chan. Phys. 28, 218 (1958).CrossRefGoogle Scholar
  43. 43.
    K.B. McAffee, J. Chan. Phys. 28, 226 (1958).CrossRefGoogle Scholar
  44. 44.
    C.F. Miller and R.W. Shepard, Vacuum 11, 58 (1961).CrossRefGoogle Scholar
  45. 45.
    R.H. Edwards, M.S. Thesis, University of California, Berkeley, August, 1966.Google Scholar
  46. 46.
    G.L. McVay, Bulletin Amer. Ceram. Soc. 53, 354 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. E. Shelby
    • 1
  1. 1.Physical Research DivisionSandia LaboratoriesLivermoreUSA

Personalised recommendations