Cation Migration in Electrode Glasses

  • F. G. K. Baucke
Part of the Materials Science Research book series (MSR, volume 9)

Abstract

A modified moving boundary method for the investigation of cation migration within solids has been developed and applied to lithium-containing pH-electrode glasses [1,2]. Concentration profiles of the boundary between different ions drifting in the field are measured by subsequently ion-sputtering the membrane surface using a method described by Bach [3–7].

From aqueous acid solutions are transferred protons and no hydronium ions. H+ mobilities are smaller than those of Li+ ions by more than 103, thus generating distinct layers of migrating ions. Corresponding activation energies are not very different.

Simultaneous transfer of ions (H+, D+, Li+, Na+) across the interface depends on ionic radii and activities in the anodic solution. Particularly important is the pH-dependent dissociation of surface ≡ESiOH groups governing the Li+ + H+ transfer. The results support the dissociation mechanism of pH-glass electrode response proposed earlier [8].

Keywords

Migration Magnesium Mercury Silicate Lithium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.G.K. Baucke, Z. Naturforsch., 26a (1971) 1778.Google Scholar
  2. 2.
    F.G.K. Baucke, Paper delivered at the Symposium on Mass Transport in Amorphous Solids, Electrochem. Soc. and Soc. Glass Techn., Sheffield, England, January, 1973.Google Scholar
  3. 3.
    H. Bach, Z. angew. Phys., 28 (1970) 239.Google Scholar
  4. 4.
    H. Bach, International Congress on Glass, Versailles (1971) Vol. I, 155.Google Scholar
  5. 5.
    H. Bach and F.G.K. Baucke, Electrochim. Acta, 16 (1971) 1311.Google Scholar
  6. 6.
    H. Bach, Paper delivered at the Symposium on Mass Transport in Amorphous Solids, Electrochem. Soc. and Soc. Glass Techn., Sheffield, England, January, 1973.Google Scholar
  7. 7.
    H. Bach and F.G.K. Baucke, Phys. and Chem. Glasses, to be published.Google Scholar
  8. 8.
    F.G.K. Baucke, J. Non-Crystalline Solids, 14 (1974) 13.CrossRefGoogle Scholar
  9. 9.
    H. Ohta and M. Hara, J. Ceram. Assoc. Japan, 78 (1970) 158.CrossRefGoogle Scholar
  10. 10.
    H. Ohta, J. Ceram. Assoc. Japan, 80 (1972) 16.Google Scholar
  11. 11.
    M. Chemla, Thesis, Paris, 1954.Google Scholar
  12. 12.
    M. Chemla, Ann. Physique (13) 1 (1956) 959.Google Scholar
  13. 13.
    J.P. Lacharme, Compt. rend. Acad. Sc. Paris, t. 275 (1972) Série C., 993.Google Scholar
  14. 14.
    I.O. Isard, in: Glass Electrodes for Hydrogen and Other Cations, G. Eisenmann, ed., Dekker, New York, 1967.Google Scholar
  15. 15.
    F. Quittner, Ann. Phys., IV. Folge 85 (1928) 745.CrossRefGoogle Scholar
  16. 16.
    G. Haugaard, Compt. rend. Lab. Carlsberg, Ser. China. 22 (1938) 199.Google Scholar
  17. 17.
    G. Haugaard, J. phys. Chem., 45 (1941) 148.CrossRefGoogle Scholar
  18. 18.
    K. Schwabe and H. Dahms, Monatsber. der Deutschen Akademie der Wissenschaften zu Berlin, Bd. 1, Heft 5 (1959) 279.Google Scholar
  19. 19.
    P.R. Hammond, Chan. Ind., 1962, 311.Google Scholar
  20. 20.
    T.M. Proctor and P.M. Sutton, J. Amer. Cer. Soc., 43 (1960) 173.CrossRefGoogle Scholar
  21. 21.
    D.L. Kinser and L.L. Hench, J. Amer. Cer. Soc., 52 (1969) 638.CrossRefGoogle Scholar
  22. 22.
    D.E. Carlson, K.W. Haug, and G.F. Stockdale, J. Amer. Cer. Soc, 55 (1972) 337.CrossRefGoogle Scholar
  23. 23.
    S.P. Mithoff and R.J. Charles, J. Appl. Phys., 43 (1972) 927.CrossRefGoogle Scholar
  24. 24.
    H. Scholze, Glastechn. Ber., 32 (1959) 81, 142.Google Scholar
  25. 25.
    B.P. Nikolski, Acta Physiochim. USSR, 7 (1937) 597.Google Scholar
  26. 26.
    M. Dole, The Glass Electrode, Wiley, New York, 1941.Google Scholar
  27. 27.
    K. Schwabe and H. Dahms, Isotopentechnik, 1 (1960) 34.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • F. G. K. Baucke
    • 1
  1. 1.JENAer GLASWERK SCHOTT & GENMainzGermany

Personalised recommendations