Silicon and Oxygen Diffusion in Oxide Glasses

  • Helmut A. Schaeffer
Part of the Materials Science Research book series (MSR, volume 9)


After reviewing briefly different methods for the determination of silicon and oxygen self-diffusion coefficients a mass spectrometric technique, utilizing the stable isotopes silicon-30 and oxygen-18, will be discussed. The importance of silicon and oxygen data is pointed out in connection with rate-controlling steps and with structural information. For silicates an attempt will be made to estimate silicon and oxygen diffusivities from the radius ratio of their atoms or ions, assuming that this ratio depends on the extent of covalency in the Si-O bond.


Oxygen Isotope Oxygen Diffusion Tracer Diffusion Isotope Silicon Tracer Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Schaeffer, The application of silicon-30 in self-diffusion investigations, phys. stat. sol.(a) 22, 281–291 (1974).CrossRefGoogle Scholar
  2. 2.
    D.J. Derry. D.G. Lees, and J.M. Calvert, A study of oxygen diffusion in titanium dioxide, Proc. Brit. Ceram. Soc. No. 19, 77–83 (1971).Google Scholar
  3. 3.
    R. Haul and D. Just, Messung der Diffusion in Kristallen durch Isotopenaustausch mit Gasen, Z. Elektrochem. 62, 1124–1130 (1958).Google Scholar
  4. 4.
    H.A. Schaeffer and H. J. Oel, Massenspektrometrisches Verfahren zur Bestimmung der Sauerstoff-Selbstdiffusion in Glaesern, Z. Naturforsch. 25 a, 59–64 (1970).Google Scholar
  5. 5.
    H. Towers and J. Chipman, Diffusion of calcium and silicon in a lime-alumina-silica slag, Trans. AIME 209, 769–773 (1957).Google Scholar
  6. 6.
    T.B. King and P.J. Koros, in “Kinetics of High Temperature Processes” OW.D. Kingery, ed.) pp. 80–85, M.I.T. Technology Press, Cambridge, Mass. (1959).Google Scholar
  7. 7.
    H. Ueda and Y. Oishi, Self diffusion coefficients of oxygen in molten glass of CaO-Al2O3-SiO2 Sam-Annual Report, The Asahi Glass Foundation for the contribution to Industrial Technology Vol. 16 (1970), pp. 201–220.Google Scholar
  8. 8.
    W.D. Kingery and J. A. Lecron, Oxygen mobility in tro silicate glasses, Phys. Chem. Glasses 1, 87–89 (1960).Google Scholar
  9. 9.
    W.C. Hagel and J.D. Mackenzie, Electrical conduction and oxygen diffusion in calcium-aluminoborate and calcium-aluminosilicate glasses, Phys. Chem. Glasses 5, 113–119 (1964).Google Scholar
  10. 10.
    B.A. Thompson and R.L. Strong, Self-diffusion of oxygen in lead oxide, J. Phys. Chem. 67, 594–597 (1963).CrossRefGoogle Scholar
  11. 11.
    H.A. Schaeffer and H.J. Oel, Sauerstoff-18-Diffusion in Bleiglaesern, Glastechn.Ber. 42, 493–498 (1969).Google Scholar
  12. 12.
    T. Tokuda, T. Ito, and T. Yamaguchi, Self diffusion in a glass-former melt, oxygen transport in boron trioxide, Z. Naturforsch. 26 a, 2058–2060 (1971).Google Scholar
  13. 13.
    R. Haul and G. Duembgen, Untersuchung der Sauerstoffbeweglichkeit in Titandioxid, Quarz und Quarzglas mit Hilfe des heterogenen Isotopenaustausches, Z. Elektrochan. 66, 636–641 (1962).Google Scholar
  14. 14.
    E.W. Sucov, Diffusion of oxygen in vitreous silica, J. Amer. Ceram. Soc. 46, 14–20 (1963).CrossRefGoogle Scholar
  15. 15.
    E.L. Williams, Diffusion of oxygen in fused silica, J. Amer. Ceram. Soc. 48, 191–194 (1965).CrossRefGoogle Scholar
  16. 16.
    F.V. DiMarcello, Oxygen diffusion in a sodium silicate glass, Amer. Ceram. Soc. Bull. 45, 419 (1966).Google Scholar
  17. 17.
    R. Brill, C. Hermann and Cl. Peters, Roentgenographische Fouriersynthese von Quarz, Ann. Physik 41, 233–244 (1942).CrossRefGoogle Scholar
  18. 18.
    W. Noll, Die silicatische Bindung vcm Standpunkt der Elektronentheorie, Angew. Chem. 75, 123–130 (1963).CrossRefGoogle Scholar
  19. 19.
    G.M. Bartenev, S.M. Brekhovskikh, A.Z. Varisov, L.M. Landa, and A.D. Tsyganov, Nature of the chenical bonds in oxygen-containing glasses, according to positron annihilation data, Inorg. Mat. 6, 1371–1373 (1970).Google Scholar
  20. 20.
    V.P. Prjanishnikov, G.M. Bartenev, A.D. Ziganov, and V.V. Gorbachev, The electronic structure of crystalline and amorphous silica modifications and the nature of the chemical Si-O bond, IX. International Congress on Glass, Versailles (1971) Vol. 1, pp. 119–131.Google Scholar
  21. 21.
    H.B. May and R. Wollast, Interdiffusion coefficients in SiO2-K2O melts, J. Amer. Ceram. Soc. 57, 30–34 (1974).CrossRefGoogle Scholar
  22. 22.
    G. Borchardt and H. Schmalzried, Bildung von Qrthosilicaten im festen Zustand, Ber. Dt. Keram. Ges. 49, 395–400 (1972).Google Scholar
  23. 23.
    G. Donnay, J. Wyart, and G. Sabatier, Structural mechanism of thermal and compositional transformations in silicates, Z. Kristallogr. 112, 161–168 (1959).CrossRefGoogle Scholar
  24. 24.
    H.F.W. Taylor, Aspects of the crystal structures of calcium silicates and aluminates, J. appl. Chem. 10, 317–323 (1960).CrossRefGoogle Scholar
  25. 25.
    K.H. Jost, Ueber den Mechanismus von Festkoerperreaktionen in Silicaten, Kristall/Technik 4, 469–485 (1969).Google Scholar
  26. 26.
    A.E. Martin and G. Derge, The electrical conductivity of molten blast-furnace slags. Trans. AIME 154, 104–115 (1943).Google Scholar
  27. 27.
    L. Heyne, N.M. Beekmans, and A. de Beer, Ionic Conduction and oxygen diffusion in yellow lead oxide, J. Electrochem. Soc. 119, 77–84 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Helmut A. Schaeffer
    • 1
  1. 1.Institut fuer Werkstoffwissenschaften IIIUniversitaet Erlangen-NuernbergGermany

Personalised recommendations