Comparison of Atom Mobility in Crystalline and Glassy Oxides

  • G. H. Frischat
Part of the Materials Science Research book series (MSR, volume 9)


Na and Ca self-diffusion and specific electrical conductivity are compared for glassy and crystalline Na2O•2CaO•3SiO2. Applying Nernst-Einstein equation to Na self-diffusion and electrical conductivity results in correlation factors f between 0.4 and 0.5 for both substances. These f values nay be understood in terms of an interstitialcy mechanism.

Na, Ca and Al impurity diffusion have been obtained for different SiO2 glasses and for quartz crystals. Applying Nernst-Einstein equation to Na diffusion and to electrical conductivity yields f = 1 for both substances. Since the Na impurity content between 0.1 and 10 ppna of SiO2 requires an alkali-alkali separation of not less than 100 Å, the mechanism approaches interstitial diffusion and the diffusion steps are not correlated.


Quartz Crystal Impurity Content Impurity Diffusion Specific Electrical Conductivity Diffusion Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Barrer and D.E.W. Vaughan, Solution and diffusion of helium and neon in tridymite and cristobalite, Trans Faraday Soc. 63, 2275–2290 (1967).CrossRefGoogle Scholar
  2. 2.
    R. Haul and G. Dumbgen, Untersuchung der Sauerstoffbeweglichkeit in Titandioxid, Quarz und Quarzglas mit Hilfe des heterogenen Isotopenaustausches, Z. Elektrochem. 66, 636–641 (1962).Google Scholar
  3. 3.
    E.W. Suoov, Diffusion of oxygen in vitreous silica, J. Amer. Cerarti. Soc. 46, 14–20 (1963).CrossRefGoogle Scholar
  4. 4.
    E.L. Williams, Diffusion of oxygen in fused silica, J. Amer. Ceram. Soc. 48, 190–194 (1965).CrossRefGoogle Scholar
  5. 5.
    G.H. Frischat, Einfluss der α-β — Quarzurrwandlung auf die 22Na-Diffusion in SiO2-Glas, Naturwiss. 54, 561–562 (1967).CrossRefGoogle Scholar
  6. 6.
    G.H. Frischat, Beweglichkeit von Natriumionen in synthetischem Quarzglas, Z. angew Phys. 25, 163–166 (1968).Google Scholar
  7. 7.
    G.H. Frischat, Sodium diffusion in SiO2 glass, J. Aner. Ceram. Soc. 51, 528–530 (1968).CrossRefGoogle Scholar
  8. 8.
    G.H. Frischat, Natrium-Tracerdiffusion in wasserarmem synthetischem Kieselglas, Glastechn. Ber. 42, 351–358 (1969).Google Scholar
  9. 9.
    G.H. Frischat, Evidence for calcium and aluminum diffusion in SiO2 glass, J. Amer. Ceram. Soc. 52, 625 (1969).CrossRefGoogle Scholar
  10. 10.
    G.H. Frischat, Untersuchung des Oberflachenprozesses bei der 22Na-Diffusion in synthetischem Quarzglas, Z. angew. Phys. 28 193–196 (1970).Google Scholar
  11. 11.
    G.H. Frischat, Anomalous Diffusion behavior of sodium in SiO2 glass. I. Description of superimposed diffusion processes, Physics Chem. Glasses 11, 25–29 (1970).Google Scholar
  12. 12.
    G.H. Frischat, Einfluß der thermischen Vorgeschichte auf die Natriumdiffusion in Kieselglas, Glastechn. Ber. 43, 174–183 (1970).Google Scholar
  13. 13.
    G.H. Frischat, Natriumdiffusion in verschiedenen Kieselglasern, Glastechn. Ber. 43, 482–488 (1970).Google Scholar
  14. 14.
    G.H. Frischat, Tracerdiffusion in glasigem und kristallinen SiO2, Glas-Email-Keramo-Techn. 22, 275–280 (1971).Google Scholar
  15. 15.
    G.H. Frischat, Ionentransport in Siliciumdioxid, Glastechn.Ber.45, 309–319 (1972).Google Scholar
  16. 16.
    G. H. Frischat, Tracer diffusion in the c-axis direction of quartz, Phys. stat. sol. 35, K47–K49 (1969).CrossRefGoogle Scholar
  17. 17.
    G.H. Frischat, Kationentransport in Quarzkristallen. I. Natriumdiffusion parallel zur c-Achse, Ber. Dt. Keram. Ges. 47, 238–243 (1970).Google Scholar
  18. 18.
    G.H. Frischat, Kationentransport in Quarzkristallen. II. Natriumdiffusion senkrecht zur c-Achse, Ber. Dt. Keram. Ges. 47, 313–316 (1970).Google Scholar
  19. 19.
    G.H. Frischat, Kationentransport in Quarzkristallen. III. Calciumdiffusion parallel zur c-Achse, Ber. Dt. Keram. Ges. 47, 364–368 (1970).Google Scholar
  20. 20.
    G.H. Frischat, Kationentransport in Quarzkristallen. IV. Verknupfung zwischen elektrischer Leitfahigkeit und Natriumdiffusion, Ber. Dt. Keram. Ges. 47, 635–637 (1970).Google Scholar
  21. 21.
    G.H. Frischat, Sodium diffusion in natural quartz crystals, J. Amer. Ceram. Soc. 53, 357 (1970).CrossRefGoogle Scholar
  22. 22.
    R. Lindner, Selbstdiffusion in Bleisilicaten, Acta Chem. Scand. 5, 735–750 (1951).CrossRefGoogle Scholar
  23. 23.
    R. Lindner, W. Hassenteufel, Y. Kotera and H. Matzke, Diffusion radioaktiven Bleies in Bleimetasilicatglas. Z. Phys. Chem. N.F.23, 408–414 (1960).CrossRefGoogle Scholar
  24. 24.
    G.H. Frischat and H.J. Oel, Transportvorgange in glasigem und kristallinem Na2O•2CaO•3SiO2, Glastechn. Ber. 39, 50–61 (1966).Google Scholar
  25. 25.
    G. H. Frischat and H. J. Oel, Calcium-Selbstdiffusion in glasigem und kristallinen Na2O•2CaO•3SiO2, Glastechn. Ber. 39, 524–(1966).Google Scholar
  26. 26.
    G.H. Frischat, Einfluß der Kristallitgroßenverteilung auf die Korngrenzen-Selbstdiffusion in Polykristallen, Naturwiss. 53, 610–611 (1966).CrossRefGoogle Scholar
  27. 27.
    G.H. Frischat, Bestimmung der effektiven Korngrenzenselbst-diffusion in Polykristallen geringer Kristallitgroße, Z. angew. Phys. 22, 281–287 (1967).Google Scholar
  28. 28.
    G.H. Frischat, 22Na- und 45Ca-Volumen- und Komgrenzendiffusion in polykristallinem Na2O•2CaO•3SiO2, Ber. Dt. Keram. Ges. 44, 232–240 (1967).Google Scholar
  29. 29.
    S.G. Bishop and P.J. Bray, NMR studies of diffusion in glassy and crystalline lithium borates, J. Chem. Phys. 48, 1709–1717 (1968).CrossRefGoogle Scholar
  30. 30.
    L.S. Dent Glasser and J.S. Mileson, Crystal data for Na2 Ca2 SiO3O9, J. Amer. Ceram. Soc. 51, 55 (1968).CrossRefGoogle Scholar
  31. 31.
    G.H. Frischat, Untersuchung der Gefugeanderung beim Tempern von polykristallinem Na2O•2CaO•3SiO2, Ber. Dt. Keram. Ges. 46, 316–320 (1969).Google Scholar
  32. 32.
    G.H. Prischat and H.J. Oel, Eine Restaktivitatsmethode zur Bestimmung von Selbstdiffusionskoeffizienten in Festkorpern, Z. angew. Phys. 20, 195–201 (1966).Google Scholar
  33. 33.
    Y. Haven and B. Verkerk, Diffusion and electrical conductivity of sodium ions in sodium silicate glasses, Physics. Chem. Glasses 6, 38–45 (1965).Google Scholar
  34. 34.
    R.H. Doremus, Electrical conductivity and electrolysis of alkali ions in silica glass, Physics Chem. Glasses 10, 28–33 (1969).Google Scholar
  35. 35.
    K.H. Stern, Ion diffusion into fused silica from molten salts, J. Phys. Chen. 72, 2256–2259 (1968).CrossRefGoogle Scholar
  36. 36.
    A.J. Moulson and J.P. Roberts, Water in silica glass, Trans. Faraday Soc. 57, 1208–1216 (1961).CrossRefGoogle Scholar
  37. 37.
    S.V. Kolodieva and M.M. Firsova, The electrical conductivity of natural and synthetic quartz in a constant electrical field, Soviet Phys. — Crystall. 13, 540–544 (1969).Google Scholar
  38. 38.
    J.P. Carron, Autodiffusion du sodium et conductivite electrique dans les obsidiennes granitiques, C.R. Acad. Sci.266, 854–856 (1968).Google Scholar
  39. 39.
    R.F. Sippel, Sodium self-diffusion in natural minerals, Geochim. Cosmochlm. Acta 27, 107–120 (1963).CrossRefGoogle Scholar
  40. 40.
    J. Verhoogen, Ionic diffusion and electrical conductivity in quartz, Amer. Mineral. 37, 637–655 (1962).Google Scholar
  41. 41.
    L. Rybach and F. Laves, Sodium diffusion experiments in quartz crystals, Geochim. Cosmochim. Acta 31, 539–546 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • G. H. Frischat
    • 1
  1. 1.Arbeitsgruppe Glas, Lehrstuhl fur Glas und KeramikTechnische UniversitatClausthalGermany

Personalised recommendations