Measurement of Chemical Diffusion Coefficients in Non-Stoichiometric Oxides Using Solid State Electrochemical Techniques

  • B. C. H. Steele
Part of the Materials Science Research book series (MSR, volume 9)


The application of solid state electrochemical techniques to the measurement of chemical diffusion coefficients in non-stoichiometric oxides is discussed, with particular reference to data obtained for UO2+x using Zr0.9 Y0.1O1.95 electrolytes. The development of the technique using beta-alumina electrolytes to examine the thermodynamic and transport properties of sodium and potassium in selected oxides is described. Partial molar thermodynamic data was obtained for the systems Na0.6 WO3, Na0.4 WO3, Na0.32V2O5, and Nax Fe7O11-y. These data can be used, for example, to calculate that the theoretical specific energy of a battery system incorporating the vanadium bronzes as cathode materials would be approximately 400Wh/Kg. The mass transport properties of the sodium vanadium and tungsten bronzes, however, would not meet the requirements of a solid state battery system as potentiostatic measurements indicate that the chemical diffusion coefficient (D) values for sodium are less than 10-12 cm2/s. The mass transport properties of the beta-ferrite (NaxFe7O11-7) are more attractive as values for D at 200°C approach 10-6 cm2/s. The thermodynamic and transport properties of these materials are briefly discussed in terms of the available structural information.


Cathode Material Chemical Diffusion Tungsten Bronze Chemical Diffusion Coefficient Tungsten Bronze Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Wagner in “Mass Transport in Oxides” (J.B. Wachtman and A.D. Franklin Eds.) pp. 65–81, National Bureau of Standards Special publication No. 296, Washington (1968).Google Scholar
  2. 2.
    B. C. H. Steele in “Fast Ion Transport in Solids” (W. van Gool, Ed.) pp. 103–22, North Holland Amsterdam (1973).Google Scholar
  3. 3.
    L.S. Darken, Diffusion, Mobility, and Their Interrelation through Free Energy in Binary Metallic Systems, Trans. AIME 175, 184, (1948).Google Scholar
  4. 4.
    P.E. Childs, L.W. Lamb, and J.B. Wagner, Chemical Diffusion in Non-Stoichiometric Compounds, Proc. Brit. Ceram. Soc. No. 19, pp. 29–53, (1971).Google Scholar
  5. 5.
    B. C. H. Steele in “Heterogeneous Kinetics at Elevated Temperatures”, (G.R. Belton and W.L. Worrell, Eds.) pp. 135–163, Plenum Press, New York (1970).Google Scholar
  6. 6.
    H. Rickert, “Einfuhrung in die Elektrochemie fester Stoffe”, Springer-Verlag, Berlin, (1973).Google Scholar
  7. 7.
    H. Zachner and N. Boes, Electrochemical Methods for Diffusion Measurements, Ber der Bunsen Gesellschaft 76, 783–797, (1972).Google Scholar
  8. 8.
    K.E. Oberg, L. M. Friedman, W.M. Boorstein, and R.A. Rapp, The Diffusivity and Solubility of Oxygen in Liquid Copper and Liquid Silver from Electrochemical Measurements, Met. Trans. 4, 61–67, (1973).CrossRefGoogle Scholar
  9. 9.
    B.C.H. Steele and C.C. Riccardi, in “Metallurgical Chemistry” (O. Kubaschewski Ed.) pp. 123–135, H.M.S.O., London (1972).Google Scholar
  10. 10.
    B.C.H. Steele, J. Chan, and C.C. Riccardi, to be published in J. Nucl. Mats.Google Scholar
  11. 11.
    C.C. Riccardi, D.I.C. Thesis, Imperial College, London, (1971).Google Scholar
  12. 12.
    K.W. Lay, Oxygen Chemical Diffusion Coefficient in Uranium Dioxide, J. Am. Cerarti. Soc., 53, 369–373, (1970).CrossRefGoogle Scholar
  13. 13.
    W. Weppner “Elekrochemische Untersurchung der chemischen Diffusion in Metall-Oxiden am Beispiel des Wustits mit Hilfe Oxidischer Festelektrolyte bei Hoheren Temperatures” Doctoral Thesis. University of Dortmund, Germany, 1973.Google Scholar
  14. 14.
    F.W. Dampier, The Cathodic Behaviour of CuS, MoO3, and MnO2 in Lithium Cells, J. Electrochem. Soc. 121 656–660, (1974).CrossRefGoogle Scholar
  15. 15.
    J.H. Kennedy and A.F. Scammells, Galvanic Cells Containing Cathodes of Iron-Doped Beta-Alumina, J. Electrochem. Soc. 121 1–7 (1974).CrossRefGoogle Scholar
  16. 16.
    P. Hagermuller Spivn in “Progress in Solid State Chemistry” (H. Reiss, Ed.) Vol. 5, pp. 71–144 Pergamon Press, Oxford (1971).Google Scholar
  17. 17.
    P.G. Dickens and D.J. Neild, Thermochemistry of Oxide Bronzes. Part II Sodium Tungsten Bronzes Nax WO3 (x = 0.53 and 0.77), J. Chem. Soc. (Dalton) 1973, 1074–1076.Google Scholar
  18. 18.
    P.G. Dickens, M. Jewess, D.J. Neild and J.C.W. Rose, Thermochemistry of Oxide Bronzes Part I Sodium Vanadium Bronzes Nax V2O5 with x between 0.2 and 0.33, J. Chem. Soc. (Dalton) 1973 30–33.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • B. C. H. Steele
    • 1
  1. 1.Imperial CollegeLondon, S.W. 7England

Personalised recommendations