High Temperature Electrical Conductivity of Aluminum Oxide

  • H. P. R. Frederikse
  • W. R. Hosler
Part of the Materials Science Research book series (MSR, volume 9)


The electrical conductivity of polycrystalline and single crystal AI2O3 has been determined between 1000 and 1650°C. Measuring the conductivity between the outside and inside surface of a thin-walled, hollow tube eliminates the adverse effects of gas or surface conduction. An analysis of possible electronic and ionic charge transport mechanisms shows that none of these processes fully accounts for the magnitude of the observed conductivity. Migration of Al3+ ions (or Al3+ vacancies) yields the largest values and offers at present the best explanation for electrical conduction in Al2O3


Activation Energy Charge Transport Diffusion Experiment Hollow Tube Intrinsic Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Modern Oxide Materials”, Ed, by J. Cockayne and D.W. Jones Published by Academic Press, New York, 1972.Google Scholar
  2. 2.
    D.W. Peters, L. Feinstein and C. Peltzer, “On the High Temperature Electrical Conductivity of Alumina”, J. Chem. Phys. 42 (7) 2345–46, (1964).CrossRefGoogle Scholar
  3. 3.
    R.J. Brook, J. Yee and F.A. Kroger, “Electrochanical Cells and Electrical Conduction of Pure and Doped Al2O3”, J. Am. Cer. Soc. 54 (9) 444–451 (1971).CrossRefGoogle Scholar
  4. 4.
    W. J. Lackey, “Effect of Temperature on Electrical Conductivity and Transport Mechanisms in Sapphire.” Proceedings of a Conference on “Ceramics in Severe Environments” North Carolina State Univ., Raleigh, N.C., Dec. 1970.Google Scholar
  5. 5.
    J. Yee and F.A. Kroger, “EMF Measurements on Al2O3; Pitfalls and Results”, submitted to J. Am. Cer. Soc.Google Scholar
  6. 6.
    O.T. Özkan and A.J. MDulson, “Electrical Conductivity of Single Crystal and Polycrystalline Aluminum Oxide”, Brit. J. Appl. Phys. 3 (.6) 983–86 (1970).Google Scholar
  7. 7.
    Karl Hauffe and Dietrick Hoeffgen, “On the Electrical Conductivity of Corundum”, Ber. Bunsen gesellschaft Phys. Chem. 74, 639 (1970).Google Scholar
  8. 8.
    J.J. Mills, “Electrical Conductivity and Conduction Mechanisms in Alumina”, Techn. Kept. ARL 68-D 154, 1968.Google Scholar
  9. 9.
    J.A. Champion, “Electrical Conductivity of Sapphire and Ruby Crystals”, Proc. Brit. Ceramic Soc. 10, 57–62 (1968).Google Scholar
  10. 10.
    T. Matsumara, “Electrical Properties of Alumina at High Tem-peratures”, Can. J. Phys. 44 (8) 1685–98 (1966).CrossRefGoogle Scholar
  11. 11.
    Myron A. Davies, “Transport Phenomena in Aluminum Oxide”, NASA, Techn. Note D-27 65 (1965).Google Scholar
  12. 12.
    N.M. Tallan and H.C. Graham, “Interfacial Polarization and Electrical Conductivity in Sapphire”, J. Am. Cer. Soc. 48 (10) 512–16 (1965).CrossRefGoogle Scholar
  13. 13.
    P.J. Harrop and R.H. Creamer, “High Temperature Electrical Conductivity of Single Crystal Alumina”, Brit. J. Appl. Phys. 14 (6) 335–39 (1963).CrossRefGoogle Scholar
  14. 14.
    A.E. Paladino and W.D. Kingery, “Aluminum Ion Diffusion in Aluminum Oxide”, J. Chan. Phys. 37 (5) 957–62 (1962).CrossRefGoogle Scholar
  15. 15.
    J. Pappis and W. D. Kingery, “Electrical Properties of Single Crystal and Polycrystalline Alumina at High Temperature, J. Am. Cer. Soc. 44 (9) 459–64 (1961).CrossRefGoogle Scholar
  16. 16.
    Y. Oishi and W.D. Kingery, “Self-Diffusion of Oxygen in Single-Crystal and Polycrystalline Aluminum Oxide, J. An. Cer. Soc. 33 (2) 480–86 (1960).Google Scholar
  17. 17.
    W.D. Kingery and G.E. Meiling, “Transference Number Msasure-ments for Aluminum Oxide”, J. Appl. Phys. 32 (3) 556 (1961).CrossRefGoogle Scholar
  18. 18.
    K. Kitazawa and R.L. Coble, “Electrical Conduction Mechanisms in Single and Polycrystalline Alumina at High Temperatures”. Preprint of a paper presented at the 74th Annual Meeting, Amer. Cer. Soc, Washington, D.C., May 1972.Google Scholar
  19. 19.
    R.J. Brook, W.L. Pelzmann and F.A. Kroner, “Platinum Electrodes and Calcia-Stabilized Zirconia”, J. Electrochan. Soc. 118 (2), 185–192, (1971).CrossRefGoogle Scholar
  20. 20.
    “Advanced Electrical Measurements”, p. 257, W.C. Michels, Van Nostrand Co., New York, 1941.Google Scholar
  21. 21.
    J. Volger Spivn in Progress in Semiconductors, Vol. 4. p. 205; edited by A.F. Gibson, Pubi, by John Wiley; New York (1960).Google Scholar
  22. 22.
    e.g., “Dielectric Materials and Applications”, edited by A.R. von Hippel, Publ. by John Wiley, New York (1954), pp. 377–83.Google Scholar
  23. 23.
    “Space Charge Limited Currents”, Henry F. Ivey, in Advances in Electronics and Electron Physics, Vol. 6, p. 194 Ed. by L. Martin Publ. by Academic Press, New York, 1954.Google Scholar
  24. 24.
    “Space Charge Limited Currents”, Henry F. Ivey, in Advances in Electronics and Electron Physics, Vol. 6, p. 194 Ed. by L. Martin Publ. by Academic Press, New York, 1954. Ibid. p. 234.Google Scholar
  25. 25.
    Selby M. Skinner, et al., “Electrical Phenomena in Adhesion I. Electron Atmospheres in Dielectrics”, J. Appl. Phys. 24 (4) 438–50 (1953).CrossRefGoogle Scholar
  26. 26.
    Selby M. Skinner, “Diffusion, Static Charges and the Conduction of Electricity in Nonmetallic Solids by a Single Charge Carrier II. Solution of the Rectifier Equation for Insulating Layers”, J. Appl. Phys. 26 (5) 509–18 (1955).CrossRefGoogle Scholar
  27. 27.
    E.I. Adirovich, Sov. Phys-Solid State 2 (7) 1282–93 (1961).Google Scholar
  28. 28.
    H.Y. Fan, “Theory of Rectification of an Insulating layer”, Phys. Rev. 74 (10) 1505–13 (1948).CrossRefGoogle Scholar
  29. 29.
    W.R. Strehlow and E.L. Cook, J. Phys. Chan. Ref. Data 2, 163 (1973).CrossRefGoogle Scholar
  30. 30.
    A.E. Hughes and B. Henderson in “Poing Defects in Solids”, Vol. 1, Ed. by J.H. Crawford and L.M. Slifkin, Publ. by Plenum Press, New York — London (1972).Google Scholar
  31. 31.
    F. Lutz, H. Fedders and M. Hunger, J. Phys. Chan. Solids, 22 229 (1961).Google Scholar
  32. 32.
    E.R. Plante, private communication.Google Scholar
  33. 33.
    G.M. Fryer, “Effects of Seme Impurities on the Pressure-sintering of Alumina”, Trans. Brit. Ceram. Soc. 68, 191 (1969);Google Scholar
  34. 33a.
    G.M. Fryer, “The Activation Energies for Ionic Self-Diffusion in Alumina”, Trans. Brit. Ceram. Soc. 71 231 (1972).Google Scholar
  35. 34.
    F.A. Kroger, “The Chemistry of Imperfect Crystals”, North Holland Pub,. Co., Amsterdam, 1964. pp. 434–435.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • H. P. R. Frederikse
    • 1
  • W. R. Hosler
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations