On the Interpretation of Lattice Diffusion in Magnesium Oxide

  • Bernhardt J. Wuensch
Part of the Materials Science Research book series (MSR, volume 9)


Magnesium oxide single crystals of greatly improved quality have recently become available, and techniques which permit preparation of diffusion specimens to temperatures as high as 2500°C have been developed. Data are available for cation and anion self-diffusion and tracer diffusion of 14 different impurity cations. Very different interpretations have been given these data.

Magnitudes of experimental diffusion coefficients are in fairly good agreement in the few cases in which different investigators have examined a given system. Insofar as examined, cation tracer diffusion coefficients appear to be independent of atmosphere. Recent theoretical estimates put the enthalpy for Schottky defect formation at 7 to 8 eV while the best MgO crystals of which present growth techniques are capable cannot display intrinsic behavior at any temperature below their melting point unless Hf is less than 6 eV. Interdiffusion coefficients known to be controlled by cation vacancies extrapolate smoothly to tracer values at zero concentration. It is therefore felt that there is strong evidence that the tracer-type diffusion data obtained to date represent extrinsic diffusion controlled by chemically-created vacancies, with energies of motion of the order of 2 eV. Alternative interpretations hinge on hints of structure in Arrhenius plots which may or may not be significant.


Residual Activity Cation Vacancy Interdiffusion Coefficient Tracer Diffusion Intrinsic Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.J. Wuensch, Diffusion in Magnesium Oxide. Submitted to Phys. Stat. Sol.Google Scholar
  2. 2.
    J. Yamashita and T. Kurosawa, Formation Energy of lattice Defect in Simple Oxide Crystals, J. Phys. Soc. Japan 9, 944–953 (1954).CrossRefGoogle Scholar
  3. 3.
    I.M. Boswarva and A.D. Franklin, Theory of the Energetics of Simple Defects in Oxides, in “Mass Transport in Oxides”, (J.B. Wachtman, Jr. and A.D. Franklin, eds.) pp. 25–32, U.S. National Bureau of Standards, Special Publication 296 (1968).Google Scholar
  4. 4.
    I.M. Boswarva, Further Calculations of the Energies of Formation of Schottky Defects in NaCl Structure Ionic Crystals, J. Phys. C. 5, L5 (1972).CrossRefGoogle Scholar
  5. 5.
    C.R.A. Catlow, I.D. Faux and M.J. Norgett, to be published. Quoted in: A.B. Lidiard, Atomic and Ionic Transport in Ionic Crystals, in “Pure and Applied Chemistry”, Proceedings of the XXIV IUPAC Congress, Hamburg, August 1973.Google Scholar
  6. 6.
    L.W. Barr and A.B. Lidiard, Defects in Ionic Crystals, Chapter 3 in “Physical Chanaistry — an Advanced Treatise”, 10, 152–228, Academic Press, New York (1970).Google Scholar
  7. 7.
    L.W. Barr and D.K. Dawson, Correlations between Melting Temperatures and Formation and Cation Motion Energies of Schottky Defects in Ionic Crystals, Proc. British Ceramic Soc. 19, 151–160 (1971).Google Scholar
  8. 8.
    B.C. Harding, The Energy of Formation of a Schottky Defect in MgO, Phys. Lett. 40A, 227–228 (1972).Google Scholar
  9. 9.
    C.T. Butler, B.J. Sturm and R.B. Quincy, Jr., Arc-Fusion Growth and Characterization of High-Purity MgO Crystals, J. Crystal Growth 8, 197–204 (1971), and in expanded form in O.R.N.L. Technical Report 4547 (June, 1970).CrossRefGoogle Scholar
  10. 10.
    B.J. Wuensch, W.C. Steele, and T. Vasilos, Cation Self-Diffusion in Single-Crystal MgO, J. Chem. Phys. 58 5258–5266 (1973).CrossRefGoogle Scholar
  11. 11.
    B.J. Wuensch and T. Vasilos, Diffusion of Ni2+ in High-Purity MgO at High Tenperatures, J. Chem. Phys. 54, 1123–1129 (1971).CrossRefGoogle Scholar
  12. 12.
    B. Henderson and J.E. Wertz, Defects in the Alkaline Earth Oxides, Advan. Phys. 17, 749–855 (1968).CrossRefGoogle Scholar
  13. 13.
    B.C. Harding, D.M. Price and A.J. Mortlock, Cation Self-Diffusion in Single Crystal MgO, Phil. Mag. 23, 399–408 (1971).Google Scholar
  14. 14.
    B.C. Harding, The Diffusion of Barium in Magnesium Oxide, Phil. Mag. 16, 1039–1048 (1967).CrossRefGoogle Scholar
  15. 15.
    P.L. Gruzin, Dokl. Akad. Nauk. SSSR 86, 289–292 (1952).Google Scholar
  16. 16.
    B.C. Harding and D.M. Price, Cation Self-Diffusion in MgO up to 2350°C, Phil. Mag. 26, 253–260 (1972).CrossRefGoogle Scholar
  17. 17.
    R. Lindner and G.D. Parfitt, Diffusion of Radioactive Magnesium in Magnesium Oxide Crystals, J. Chem. Phys. 26, 182–185 (1957).CrossRefGoogle Scholar
  18. 18.
    Y. Oishi and W.D. Kingery, Oxygen Diffusion in Periclase Crystals, J. Chen. Phys. 33, 905–906 (1960).CrossRefGoogle Scholar
  19. 19.
    L.H. Rovner, Diffusion of Oxygen in Magnesium Oxide, Ph.D. Thesis, Department of Physics, Cornell University (1966).Google Scholar
  20. 20.
    H. Hashimoto, M. Hama and S. Shirasaki, Preferential Diffusion of Oxygen along Grain Boundaries in Polycrystalline MgO, J. Appl. Phys. 43, 4828–4829 (1972).CrossRefGoogle Scholar
  21. 21.
    R.D. Shannon and C.T. Prewitt, Effective Ionic Radii in Oxides and Fluorides, Acta Crystallogr. B25,925–946 (1969).Google Scholar
  22. 22.
    F.P. Clarke, Irradiation Damage in Single Crystals of Magnesium Oxide, Phil. Mag. 2, 607–627 (1957).CrossRefGoogle Scholar
  23. 23.
    B.C. Harding, Diffusion of Ni and Ba in MgO up to 2500°C, Phys. Stat. Sol. (b) 50, 135–140 (1972).CrossRefGoogle Scholar
  24. 24.
    M. O’Keeffe and W.J. Moore, Diffusion of Oxygen in Single Crystals of Nickel Oxide, J. Phys. Chem. 65, 1438–1439 (1961).CrossRefGoogle Scholar
  25. 25.
    B.C. Harding and A.J. Mortlock, Diffusion of Be in MgO, J. Chem. Phys. 45, 2699–2700 (1966).CrossRefGoogle Scholar
  26. 26.
    J. Rungis and A.J. Mortlock, The Diffusion of Calcium in Magnesium Oxide, Phil. Mag. 14, 821–827 (1966).CrossRefGoogle Scholar
  27. 27.
    B.C. Harding and V.K. Bhalla, Cadmium Diffusion in Magnesium Oxide at High Temperatures, Phil. Mag. 24, 485–488 (1971).CrossRefGoogle Scholar
  28. 28.
    A.J. Mortlock and D.M. Price, Diffusion of Sr2+ in Single Crystal MgO, J. Chem. Phys. 58, 634–636 (1973).CrossRefGoogle Scholar
  29. 29.
    B.C. Harding, The Diffusion of Be2+ in MgO up to 2340°C, Phil. Mag. 27, 481–485 (1973).CrossRefGoogle Scholar
  30. 30.
    B.C. Harding, Cation Diffusion in Single Crystal MgO up to 2500°C, Phys. Stat. Sol. (b) 56, 645–653 (1973).CrossRefGoogle Scholar
  31. 31.
    T. Solaga and A.J. Mortlock, Concentration Dependence of the Tracer Diffusion of Sc++ in Single Crystal MgO, Phys. Stat. Sol. (a) 3, K247 (1970).CrossRefGoogle Scholar
  32. 32.
    T. Solaga, M.Sc. Thesis, Australian National University, Canberra (1972). [Quoted in reference (30)].Google Scholar
  33. 33.
    B.J. Wuensch and T. Vasilos, Diffusion in Refractory Oxides, in “Reactivity of Solids” (J.H. DeBoer et al., ed.), pp. 57–65, Elsevier Publishing Company, Amsterdam (1960).Google Scholar
  34. 34.
    B.J. Wuensch and T. Vasilos, Diffusion of Transition Metal Ions in Single-Crystal MgO, J. Chem. Phys. 36, 2917–2922 (1962).CrossRefGoogle Scholar
  35. 35.
    B.J. Wuensch and T. Vasilos, Diffusion of Zn in Single-Crystal MgO, J. Chan. Phys. 42, 4113–4115 (1965).CrossRefGoogle Scholar
  36. 36.
    B.J. Wuensch and T. Vasilos, Impurity Cation Diffusion in Magnesium Oxide, in “Mass Transport in Oxides” (J.B. Wachtman, Jr. and A.D. Franklin eds.) pp. 95–102, U.S. National Bureau of Standards, Special Publication 296 (1968).Google Scholar
  37. 37.
    H. Tagai, S. Iwai, T. Iseki and M. Saho, Diffusion of Iron, Manganese and Chromium Oxides into Single Crystal Magnesia, Radex Rundschau 1965 (4) 577–583.Google Scholar
  38. 38.
    M.F. Berard, Yttrium Impurity Diffusion in MgO Single Crystals, J. Am. Ceram. Soc. 54, 58 (1971).CrossRefGoogle Scholar
  39. 39.
    S.L. Blank and J.A. Pask, Diffusion of Iron and Nickel in Magnesium Oxide Crystals, J. Am. Ceram. Soc. 52, 669–675 (1969).CrossRefGoogle Scholar
  40. 40.
    M. Appel and J.A. Pask, Interdiffusion and Moving Boundaries in NiO-CaO and NiO-MgO Single-Crystal Couples, J. Am. Ceram. Soc. 54, 152–158 (1971).CrossRefGoogle Scholar
  41. 41.
    B.C. Harding, High-Diffusivity Paths in Magnesium Oxide, Phys. Stat. Sol. (b) 48, K35-K38 (1971).CrossRefGoogle Scholar
  42. 42.
    Y.P. Gupta and L. J. Weirick, Self-Diffusion of Calcium in Single Crystal Calcium Oxide, J. Phys. Chem. Solids 28, 811–821 (1967).CrossRefGoogle Scholar
  43. 43.
    S.P. Murarka and R.A. Swalin, Cation Self-Diffusion in Strontium Oxide (SrO), J. Phys. Chem. Solids 32, 1277–1285 (1971).CrossRefGoogle Scholar
  44. 44.
    R.W. Reddington, Diffusion of Barium in Barium Oxide, Phys. Rev. 87, 1066–1073 (1952).CrossRefGoogle Scholar
  45. 45.
    S.P. Murarka and R.A. Swalin, Cation Self-Diffusion in Barium Oxide (BaO), J. Phys. Chem. Solids 32, 2015–2020 (1971).CrossRefGoogle Scholar
  46. 46.
    G.C.T. Wei and B.J. Wuensch, Composition Dependence of 63Ni Diffusion in Single-Crystal NiO-MgO Solid Solutions, J. Am. Ceram. Soc. 56, 562–565 (1973).CrossRefGoogle Scholar
  47. 47.
    B.J. Wuensch and T. Vasilos, Diffusion in Single-Crystal MgO Subjected to Stress, Bull. Am. Ceram. Soc. 46, 357 (1967).Google Scholar
  48. 48.
    J. Mirnkes and M. Wuttig, Diffusion of Ni2+ in MgO, J. Am. Ceram. Soc. 54, 65–66 (1971).Google Scholar
  49. 49.
    J. Narayan and J. Washburn, Self Diffusion in Magnesium Oxide, Acta Met. 21, 533–538 (1973).CrossRefGoogle Scholar
  50. 50.
    S. Shirasaki and M. Hama, Oxygen-Diffusion Characteristics of Loosely-Sintered Polycrystalline MgO, Chem. Phys. Letters 20, 361–365 (1973).CrossRefGoogle Scholar
  51. 51.
    W.B. Crow, Diffusion of Cobalt, Nickel and Iron in Cobalt Oxide and Nickel Oxide, Aerospace Research Laboratories Technical Report ARL-70–0090 (June, 1970).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Bernhardt J. Wuensch
    • 1
  1. 1.Ceramics Division, Department of Metallurgy and Materials ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations