Advertisement

Alkali Ion Transport in Materials of the Beta Alumina Family

  • Robert A. Huggins
Part of the Materials Science Research book series (MSR, volume 9)

Abstract

Although solid electrolytes have been used for many years in electrochemical cells for the determination of thermodynamic quantities, interest in this area has expanded greatly within the last two decades, due primarily to the stimulus provided by Carl Wagner and his associates [1–3]. Since that time, solid state electrochemical techniques have been used for the study of both the thermodynamic and transport properties of a number of materials and physical systems.

Keywords

Oxygen Partial Pressure Solid Electrolyte Alkali Metal Oxide Electronic Species Nominal Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wagner, J. Chan. Phys. 21, 1819–1827 (1953).CrossRefGoogle Scholar
  2. 2.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 308 (1957).CrossRefGoogle Scholar
  3. 3.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 379–387 (1957).CrossRefGoogle Scholar
  4. 4.
    Y.F.Y. Yao and J.T. Kummer, J. Inorg. Nucl. Chem. 29, 2453–2475 (1967).CrossRefGoogle Scholar
  5. 5.
    N. Weber and J.T. Kummer, Proc. Ann. Power Sources Conf. 21, 37–39 (1967).Google Scholar
  6. 6.
    R.H. Radzilowski, Y.F. Yao, and J.T. Kummer, J. Appl. Phys. 40, 4716–4725 (1969).CrossRefGoogle Scholar
  7. 7.
    F.G. Will, Presented at 24th Meeting of I.S.E., Eindhoven (September, 1973).Google Scholar
  8. 8.
    J.T. Kummer, Prog. Solid State Chem. 7, 141–175 (1972).CrossRefGoogle Scholar
  9. 9.
    R.A. Huggins, “Very Rapid Ionic Transport in Solids,” to be published in “Diffusion in Solids: Recent Developments” (A.S. Nowick and J.J. Burton, eds.) Academic Press (1974).Google Scholar
  10. 10.
    R.A. Huggins, “Ionic Conduction in Oxides at Low Temperatures,” to be published in “Defects and Transport in Oxides” (M.S. Seltzer and R.I. Jaffee, eds.) Plenum Press, New York (1974).Google Scholar
  11. 11.
    J.A.A. Ketelaar, Trans. Faraday Soc. 34, 874–882 (1938).CrossRefGoogle Scholar
  12. 12.
    J.A.A. Ketelaar, Z. physik. Chen. B.26, 327 (1934).Google Scholar
  13. 12A.
    J.A.A. Ketelaar, Z. Kristallogr. A 87, 436 (1934).Google Scholar
  14. 13.
    L.W. Strock, Z. physik. Chem. B 25, 441–458 (1934).Google Scholar
  15. 14.
    L.W. Strock, Z. physik. Chan. 32 132–136 (1936).Google Scholar
  16. 15.
    J.A.A. Ketelaar, Z. physik. Chen. B 30, 53–60 (1935).Google Scholar
  17. 16.
    F. Wiedersich and S. Geller, in “The Chemistry of Extended Defects in Non-Metallic Solids” (L. Eyring and M. O’Keeffe, eds.) p. 629, North-Holland Pub. Co., Amsterdam (1970).Google Scholar
  18. 17.
    M. O’Keeffe, in “Fast Ion Transport in Solids” (W. van Gool, ed.) p. 233. North-Holland Pub. Co., Amsterdam (1973).Google Scholar
  19. 18.
    M. O’Keeffe, “Some New Halide Solid Electrolytes”, presented at the Electrochemical Society, Spring Meeting in San Francisco, May, 1974.Google Scholar
  20. 19.
    M.J. Buerger and B.J. Wuensch, Science 141, 276 (1963).CrossRefGoogle Scholar
  21. 20.
    W.L. Bragg, C. Gottfried, and J. West, Z. Krist. 77, 255–274 (1931).Google Scholar
  22. 21.
    C.A. Beevers and S. Brohalt, Z. Krist. 95, 472 (1936).Google Scholar
  23. 22.
    C.A. Beevers and M.A.S. Bdss, Z. Krist. 97, 59–66 (1937).Google Scholar
  24. 23.
    G.A. Rankin and H.E. Merwin, J. Aner. Chem. Soc. 38, 568–588 (1916).CrossRefGoogle Scholar
  25. 24.
    G.A. Rankin and H.E. Merwin, Z. Anorg. Allgem. Chem. 96, 291 (1916).CrossRefGoogle Scholar
  26. 25.
    G. Yamaguchi, Elect. Chem. Soc. Japan 11, 260 (1943).Google Scholar
  27. 26.
    G. Yamaguchi, Preprint for the 7th Annual Meeting of the Chanical Society of Japan (April, 1954), p. 192.Google Scholar
  28. 27.
    G. Yamaguchi, PhD. Thesis, University of Tokyo (1954).Google Scholar
  29. 28.
    G. Yamaguchi and K. Suzuki, Bull. Chem. Soc. Japan 41, 93–99 (1968).CrossRefGoogle Scholar
  30. 29.
    J. Thery and D. Briancon, Comptes Rendus 254, 2782–2784 (1962).Google Scholar
  31. 30.
    J. Ihery and D. Briancon, Rev. Hautes Temp. et Refract. 1, 221–227 (1964).Google Scholar
  32. 31.
    R. Scholder and M. Mansmann, Z. Naturforsch. 15b, 681 (1960).Google Scholar
  33. 32.
    R. Scholder and M. Mansmann, Z. Anorg. Allgon. Chem. 321, 246–261 (1963).CrossRefGoogle Scholar
  34. 33.
    J. Felsche, Naturwissen. 54, 612 (1967).CrossRefGoogle Scholar
  35. 34.
    J. Felsche, Z. Krist. 127, 94–100 (1968).CrossRefGoogle Scholar
  36. 35.
    M. Bettman and C.R. Peters, J. Phys. Chan. 73, 1774–1780 (1969).CrossRefGoogle Scholar
  37. 36.
    M.S. Whittingham, R.W. Helliwell, and R.A. Huggins, U.S. Gov’t. Res. and Devel. Rept. 69, 158 (1969).Google Scholar
  38. 37.
    C. Peters, M. Bettman, J. JYbore and M. Glick, Acta Cryst. B 27, 1926 (1971).CrossRefGoogle Scholar
  39. 38.
    M. Harata, Mat. Res. Bull. 6, 461–464 (1971).CrossRefGoogle Scholar
  40. 39.
    W.L. Roth, J. Solid State Chem. 4, 60–75 (1972).CrossRefGoogle Scholar
  41. 40.
    N. Weber and A.F. Venero, Ford MDtor Co. Tech. Rept. SR-69–102. Presented at 72nd Ann. Meeting of Alter. Ceram. Soc., May, 1970.Google Scholar
  42. 41.
    M. Bettman and L. Terner, J. Inorg. Chem. 10, 1442–1446 (1971).CrossRefGoogle Scholar
  43. 42.
    M. Rolin and P.H. Thanh, Rev. Hautes Temp. et Refract. 2, 175 (1965).Google Scholar
  44. 43.
    R.C. DeVries and W.L. Roth, J. Amer. Ceram. Soc. 52, 364–369 (1969).CrossRefGoogle Scholar
  45. 44.
    N. Weber and A.F. Venero, Ford MDtor Co. Techn. Rept. SR-69–86. Presented at 72nd Ann. Meeting of Amer. Ceram. Soc. (May, 1970).Google Scholar
  46. 45.
    J. Fally, C. Lasne, Y. lazennec, Y. LeCars, and P. Margotin, Electrochem. Soc. Extended Abstracts 72–1, 441–442 (1972).Google Scholar
  47. 46.
    Y. LeCars, J. Thery, and R. Collongues, Comptes Rendus 274, 4–7 (1972).Google Scholar
  48. 47.
    Y. LeCars, J. Thery, and R. Collongues, Rev. Hautes Temp. et Refract. 9, 153–160 (1972).Google Scholar
  49. 48.
    J. Fally, C. Lasne, Y. lazennec, Y. LeCars, and P. Margolin, J. Electrochem. Soc. 120, 1296–1298 (1973).CrossRefGoogle Scholar
  50. 49.
    Y. LeCars, J. Thery, and R. Gollongues, presented at 24th meeting of I.S.E., Eindhoven (September, 1973).Google Scholar
  51. 50.
    A.G. Elliot and R.A. Huggins, “Phase Relations in the System NaAlO2-Al2O3” Presented at Chicago Meeting of Amer. Ceram. Soc. (April, 1974).Google Scholar
  52. 51.
    M.S. Whittingham and R.A. Huggins, J. Electrochem. Soc. 118, 1–6 (1971).CrossRefGoogle Scholar
  53. 52.
    J. Fally, Y. lazennec, and P. Margotin, presented at 24th Meeting of I.S.E., Eindhoven (September, 1973).Google Scholar
  54. 53.
    H. Saalfeld, H. Matthies, and S.K. Datta, Ber. Deutsch. Keram. Ges. 45, 212–215 (1968).Google Scholar
  55. 54.
    W.L. Roth and S.P. Mitoff, General Electric Report 71-C 277, September, 1971.Google Scholar
  56. 55.
    D. Kline, H.S. Story, and W.L. Both, J. Chan. Phys. 57, 5180–5182 (1972).CrossRefGoogle Scholar
  57. 56.
    L. Hsueh and D.N. Bennion, J. Electrochem. Soc. 117, #3, 117 C (1970).CrossRefGoogle Scholar
  58. 57.
    A. Imai and M. Harata, J. Electrochem. Soc. 117, #3, 117 C (1970).CrossRefGoogle Scholar
  59. 58.
    I. Wynn Jones and L.J. Miles, Proc. British Ceram. Soc. 19, 161–178 (1971).Google Scholar
  60. 59.
    L.J. Miles and I. Wyrin Jones, Proc. British Ceram. Soc. 19, 179–191 (1971).Google Scholar
  61. 60.
    D.S. Demott and P. Hancock, Proc. British Ceram. Soc. 19, 193–205 (1971).Google Scholar
  62. 61.
    L.J. Miles and I. Wynn Jones, in “Power Sources 3” (D.H. Collins, ed.) p. 245. Oriel Press, Newcastle (1971).Google Scholar
  63. 62.
    L.J. Miles, I. Wynn Jones, A.D. LeClaire, and A.H. Rowe, Electrochem. Soc. Extended Abstracts 72–1, 425 (1972).Google Scholar
  64. 63.
    J.L. Sudworth, M.D. Hames, M.A. Storey, M.F. Azim, and A.R. Tilley, in “Power Sources 4” (D.H. Collins, ed.) p. 1. Oriel Press, Newcastle (1973).Google Scholar
  65. 64.
    J.H. Kennedy and A.F. Sammells, in “Fast Ion Transport in Solids” (W. van Gool, ed.) p. 563. North-Holland Pub. Co., Amsterdam (1973).Google Scholar
  66. 65.
    M.S. Whittingham and R.A. Huggins, J. Chem. Phys. 54, 414–416 (1971).CrossRefGoogle Scholar
  67. 66.
    M.S. Whittingham and R.A. Huggins, in “Solid State Chanistry” (R.S. Roth and S.J. Schneider, eds.) p. 139. Nat. Bur. of Stand. Special Publication 364, Washington (1972).Google Scholar
  68. 67.
    C. Wagner, Z. Elektrochem. 60, 4 (1956).Google Scholar
  69. 68.
    R.H. Radzilowski, Inorg. Chem. 8, 994–996 (1969).CrossRefGoogle Scholar
  70. 69.
    J.T. Kummer, presented at MAP-PENNTAP Seminar on Materials Problems and Opportunities in Energy Storage, Philadelphia, March, 1971.Google Scholar
  71. 70.
    Scientific Research Staff, Ford Motor Co., 1st Quarterly Report on Contract NSF-C 805, October, 1973.Google Scholar
  72. 71.
    Graham M. Clark, “The Structures of Non-Molecular Solids”, p. 314. John Wiley Publ. Co., New York (1972).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Robert A. Huggins
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations