A Method for Determining the Preferred Orientation of Crystallites Normal to a Surface

  • Robert L. Snyder
  • William L. Carr
Part of the Materials Science Research book series (MSR, volume 7)


Many polycrystalline materials exhibit anisotropy in their thermal, electrical, optical and mechanical properties owing to preferred orientations in crystallite packing. A knowledge of the directions and degree of preferred orientation is essential in understanding and predicting the physical properties of these materials. The directions of preferred orientation in a specimen are a function of crystallite shape and the process used to form the body. In extruded or rolled materials it is common to find two types of orientation, one normal to the surface of the body, the second within the surface in the rolling or extrusion direction1,2. Fabrication techniques based on casting, deposition or pressing, however, will introduce preferred orientations normal to the surface only, with crystallite directions within the surface at random.


Prefer Orientation Pole Figure Oriented Sample Barium Hexaferrite Crystallite Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Pentecost and C. H. Wright, Advance in X-Ray Analysis 4, 174–181 (1963).Google Scholar
  2. 2.
    P. R. Morris and A. J. Heckler, Advances in X-Ray Analysis 11, 454–472 (1967).Google Scholar
  3. 3.
    H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures, Wiley, New York 1954, Chapt. 10.Google Scholar
  4. 4.
    J. R. Holland, Advances in X-Ray Analysis 4, 86–93 (1963).Google Scholar
  5. 5.
    G. B. Harris, Phil. Mag., 43, 113–125 (1952).Google Scholar
  6. 6.
    R. Roe, J. Appl. Phys. 36, 2024–2031 (1965).CrossRefGoogle Scholar
  7. 7.
    R. Roe, J. Appl. Phys. 37, 2069–2072 (1966).CrossRefGoogle Scholar
  8. 8.
    J. A. Slane and F. Hultgren, Advances in X-Ray Analysis 14, 231–242 (1972).Google Scholar
  9. 9.
    R. H. Bragg and C. M. Packer, J. Appl. Phys. 35, 1322–1328 (1964).CrossRefGoogle Scholar
  10. 10.
    M. N. Klenck, Advance in X-Ray Analysis 11, 447–453 (1967).Google Scholar
  11. 11.
    C. G. Dunn, J. Appl. Phys. 30, 850–857 (1959).CrossRefGoogle Scholar
  12. 12.
    B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Co., Reading, Mass., 1956, Chapt. 9.Google Scholar
  13. 13.
    L. G. Schulz, J. Appl. Phys. 20, 1030 (1949).CrossRefGoogle Scholar
  14. 14.
    S. L. Lopata and E. B. Kula, Trans. Am. Inst. Mining, Met., Petrol. Engrs. 224, 865 (1962).Google Scholar
  15. 15.
    J. R. Holland, N. Engler and W. Powers, Advances in X-Ray Analysis 4, 74 (1961).CrossRefGoogle Scholar
  16. 16.
    H. Saalfeld and H. Hagodzinski, Z. Krist 109, 87–109 (1957).CrossRefGoogle Scholar
  17. 17.
    H. E. Swanson, R. K. Fuyat and G. M. Ugrinic, NBS Circular No. 539 Vol. III p. 53.Google Scholar
  18. 18.
    C. M. Clark, D. K. Smith and G. G. Johnson, Dept. of Geoscience, Pennsylvania State University, September, 1973.Google Scholar
  19. 19.
    F. Bertaut, A. Deschamps and R. Pauthenet, C. R. Acad. Sci., Paris, 246, 2594–9597 (1958).Google Scholar
  20. 20.
    V. Adelsköld, Ark. Kem. Mineral. Geol., 12(A), 9 (1938).Google Scholar
  21. 21.
    R. E. Newnham and Y. M. DeHaan, Z. Krist, 117, 235–237 (1962).CrossRefGoogle Scholar
  22. 22.
    W. L. Bragg, Proc. Roy. Soc. London, 105, 16 (1924).CrossRefGoogle Scholar
  23. 23.
    F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113–123 (1959).CrossRefGoogle Scholar
  24. 24.
    E. Gillam and E. Smethurst, Proc. Br. Ceram. Soc. 3, 129–137 (1964).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Robert L. Snyder
    • 1
  • William L. Carr
    • 1
  1. 1.New York State College of CeramicsAlfred UniversityAlfredUSA

Personalised recommendations