Advertisement

Fracture Topography of Ceramics

  • Roy W. Rice
Part of the Materials Science Research book series (MSR, volume 7)

Abstract

Fracture topography is a permanent record of the fracture process, providing valuable information on crack propagation and failure mechanisms. This paper describes mostly features observed in flexural failure at room temperature. Previous papers1–3 are complemented by emphasizing features and techniques for finding and characterizing fracture origins to aid in use of such important, too often neglected, steps in strength studies.

Keywords

Glassy Carbon Fracture Step Transgranular Fracture Fracture Origin Intergranular Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Low, Jr., in Fracture, ed. by B. L. Averbach, D. K. Felbeck, G. T. Hahn, and D. A. Thomas, pp. 68–90, MIT Press, Cambridge, Mass., 1959.Google Scholar
  2. 2.
    H. Schardin, ibid., pp. 297-330.Google Scholar
  3. 3.
    V. D. Frechette, Proc. Brit. Ceram. Soc., No. 5, pp. 97-106, Dec. 1965.Google Scholar
  4. 4.
    F. F. Lange, Phil. Mag. 16, pp. 761–770, 1967.CrossRefGoogle Scholar
  5. 5.
    F. F. Lange, Int. J. Fract. Mech., V(8), 287–294, 1968.Google Scholar
  6. 6.
    R. W. Rice, Proc. Brit. Ceram. Soc., No. 20, pp. 329-363, June 1972.Google Scholar
  7. 7.
    R. W. Rice, Proc. Brit. Ceram. Soc., No. 12, pp. 99-123, March 1969.Google Scholar
  8. 8.
    R. W. Rice and W. J. McDonough, in Mechanical Behavior of Materials, Vol. IV, pp. 394–403, The Soc. of Mat. Sci., Japan, 1972.Google Scholar
  9. 9.
    Y. Matsuo and H. Sasaki, J. Am. Ceram. Soc. 49(4), 229–230, 1966.CrossRefGoogle Scholar
  10. 10.
    R. W. Davidge and T. G. Green, J. Mat. Sci. 3, 629–634, 1968.CrossRefGoogle Scholar
  11. 11.
    R. W. Rice, J. G. Hunt, G. I. Friedman, and J. L. Sliney, “Identifying Optimum Parameters of Hot Extrusion,” Final Report for NASA Contract NAS7-276, Aug. 1968.Google Scholar
  12. 12.
    R. W. Rice, J. Am. Ceram. Soc. 55(2), 90–97, 1972.CrossRefGoogle Scholar
  13. 13.
    S. F. Pugh, Brit. J. Appl. Phys., V. 18, 129–162, 1967.CrossRefGoogle Scholar
  14. 14.
    R. W. Rice, in Ceramic Microstructures, ed. by R. M. Fulrath and J. A. Pask, pp. 579-593, John Wiley & Sons, New York, 1968. Also see data in article by R. J. Stokes, pp. 379-405, same volume.Google Scholar
  15. 15.
    F. Kerkhof and E. Sommer, in Handbuch der Mikroskopie in der Technnik Bd IV Mikroskopie der Silikate Teil 4 Mikroskopie in der Glas-und Emailtechnik, Herausgegeben von H. Freund, pp. 173-192, Unschau Verlag, Frankfurt au Main, 1963.Google Scholar
  16. 16.
    F. F. Lange, “Theory of Dispersion Toughening of Brittle Materials,” Tech. Rpt. No. 2 for Contract NOOO14-68-C-O323, May 1969.Google Scholar
  17. 17.
    J. Congleton and N. J. Petch, Phil. Mag. 16, 749–760, 1967.CrossRefGoogle Scholar
  18. 18.
    P. N. Terao, J. Phys. Soc. Japan 8(4), 545–549, 1953.CrossRefGoogle Scholar
  19. 19.
    W. C. Levengood, J. Appl. Phys. 29(2), 820–826, 1958.CrossRefGoogle Scholar
  20. 20.
    F. Kerkhof and H. Richter, Paper No. 40 in Proc. 2nd Int. Conf. on Fract., Brighton, England, 1969.Google Scholar
  21. 21.
    E. F. Poncelet, J. Soc. Glass Tech. 42, 279T–288T, 1958.Google Scholar
  22. 22.
    E. B. Shand, J. Am. Ceram. Soc. 42(10), 474–77, 1959.CrossRefGoogle Scholar
  23. 23.
    M. J. Kerper and T. G. Scuderi, Am. Ceram. Soc. Bull. 44(12), 953–955, 1965.Google Scholar
  24. 24.
    H. P. Kirchner and R. M. Gruver, to be published in Proc. of Symposium on Fracture Mechanics of Ceramics, Pennsylvania State University, July 1973.Google Scholar
  25. 25.
    J. W. Johnson and D. G. Holloway, Phil. Mag. 14, 731–743, 1966.CrossRefGoogle Scholar
  26. 26.
    A. B. J. Clark and G. R. Irwin, Exp. Stress Anal. 23(1), 321–330, June 1966.Google Scholar
  27. 27.
    S. Bateson, Phys. & Chem. Glasses 1(5), 139–142, 1960.Google Scholar
  28. 28.
    D. Haneman and E. N. Pugh, J. Appl. Phys. 34(8), 2269–2272, 1963.CrossRefGoogle Scholar
  29. 29.
    F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials, 500–501, Addison-Wesley, Reading, Mass., 1966.Google Scholar
  30. 30.
    R. W. Rice, to be published in Proc. of Syrnp. on Fracture Mechanics of Ceramics, Pennsylvania State University, July 1973.Google Scholar
  31. 31.
    S. W. Freiman, K. R. McKinney, and H. L. Smith, ibid.Google Scholar
  32. 32.
    E. B. Shand, J. Am. Ceram. Soc. 37(12), 559–572, 1954.CrossRefGoogle Scholar
  33. 33.
    E. Sommer, Glastech. Ber. 40(8), 304–307, 1967.Google Scholar
  34. 34.
    E. Sommer, Eng. Fract. Mech. 1, 539–546, 1969.CrossRefGoogle Scholar
  35. 35.
    J. C. Wurst, “Thermal, Electrical, and Physical Property Measurements of Laser Window Materials,” Quarterly Progress Report No. 5 for Contract NoF 33615-72-C-1257, June 1973.Google Scholar
  36. 36.
    R. W. Rice, Proc. Brit. Ceram. Soc. 20, 205–257, June 1972.Google Scholar
  37. 37.
    R. W. Rice, J. Am. Ceram. Soc. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Roy W. Rice
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations