Advertisement

Grain Boundary Mobility in Anion Doped MgO

  • Cawas M. Kapadia
  • Martin H. Leipold
Part of the Materials Science Research book series (MSR, volume 7)

Abstract

Impurities are known to control the microstructure of ceramic materials. Impurities tend to reside at grain boundaries in ceramics, even in relatively high purity materials1,2. Extensive work on the role of cation impurities on the grain growth kinetics has been reported3. Anions in general have received little attention even though there are suggestions as to their importance in the literature. For example, fluoride additions significantly enhance the fabricability of MgO by hot pressing4. Ceramic surfaces, qualitatively similar to grain boundaries, show a strong affinity for gases (Cl2, F2, H2O)5,6. One reason for the lack of attention to anion impurities is the analytical problems involved in their detection; routine survey analyses are insensitive to their presence. However, studies have shown that they are present and often exist as a major impurity when cation impurities are reduced to 0.01% or less7. With the exception of water vapor8, few data are available concerning the influence of anions on grain growth in MgO.

Keywords

Anneal Time Triple Point Vapor Transport Boundary Migration Porosity Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Leipold, J. Amer. Ceram. Soc., 49 (9) 498–502 (1966).CrossRefGoogle Scholar
  2. 2.
    V. S. Stubican and D. Viechnicki, J. Appl. Phys., 37 (7) 2751 (1966).CrossRefGoogle Scholar
  3. 3.(a)
    G. C. Nicholson, J. Am. Ceram. Soc. 48 (10) 525–528 (1965).CrossRefGoogle Scholar
  4. (b).
    G. C. Nicholson, J. Am. Ceram. Soc., 49 (1) 47–49 (1966).CrossRefGoogle Scholar
  5. (c).
    I. Amato, R. L. Colombo, A. Petruccioli Balzari, J. Nucl. Mater. 19 (3) 252–260 (1966).CrossRefGoogle Scholar
  6. (d).
    R. S. Gordon, D. D. Marchant, and G. W. Hollenberg, J. Am. Ceram. Soc., 53 (7) 399–406 (1970).CrossRefGoogle Scholar
  7. 4.
    R. Rice, in Ultra Fine Grain Ceramics, J. J. Burke, ed., Syracuse Univ. Press, Syracuse, N. Y., 203 (1970).Google Scholar
  8. 5.
    T. H. Nielson and M. H. Leipold, J. Am. Ceram. Soc., 49 (11) 626 (1967).CrossRefGoogle Scholar
  9. 6.
    F. Freund, J. Am. Ceram. Soc., 50 (9) 493 (1967).CrossRefGoogle Scholar
  10. 7.
    A. J. Socha and M. H. Leipold, J. Am. Ceram. Soc., 48 (9) 463 (1965).CrossRefGoogle Scholar
  11. 8.(a)
    P. J. Anderson and P. L. Morgan, Trans. Farad. Soc., 60 (5) 930–937 (1964).CrossRefGoogle Scholar
  12. (b).
    J. White, in High Temperature Oxides-Part I, A. M. Alper, ed., Academic Press, New York, p. 80 (1970).Google Scholar
  13. 9.
    M. H. Leipold and C. M. Kapadia, J. Am. Ceram. Soc., 56 (4) 200–203 (1973).CrossRefGoogle Scholar
  14. 10.
    David Turnbull, Trans. A. I. M. E. 191 (8) 661–665 (1951).Google Scholar
  15. 11.(a)
    A. U. Daniels, Jr., R. C. Lowrie, Jr., R. L. Gibby and I. B. Cutler, ibid., 45 (6) 282–85 (1962).Google Scholar
  16. (b).
    T. K. Gupta, J. Mater. Sci., 6 (1) 25–32 (1971).CrossRefGoogle Scholar
  17. 12.
    F. A. Nichols, J. Am. Ceram. Soc., 51 (8) 468–469 (1968).CrossRefGoogle Scholar
  18. 13.
    A. Mocellin and W. D. Kingery, J. Am. Ceram. Soc., 56 (6) 309–314 (1973).CrossRefGoogle Scholar
  19. 14.
    R. J. Brook, J. Amer. Ceram. Soc., 52 (6) 339–340 (1969).CrossRefGoogle Scholar
  20. 15.
    P. G. Shewmon, Trans. A. I. M. E., 230 (5) 1134–1137 (1964).Google Scholar
  21. 16.
    C. M. Kapadia, Ph. D. Thesis., Univ. of Kentucky.Google Scholar
  22. 17.
    P. G. Shewmon, Transformation in Metals, Chapt. 3, McGraw-Hill Book Co., New York, 1969.Google Scholar
  23. 18.
    N. A. Haroun and D. W. Budworth, J. Mater. Sci., 3 (3) 326–328 (1968).CrossRefGoogle Scholar
  24. 19.
    M. H. Leipold and T. H. Nielsen, Am. Ceram. Soc. Bull. 45 (3) 281–285 (1966).Google Scholar
  25. 20.
    M. H. Leipold and C. M. Kapadia, Tech. Rept. UKY 25-70 — Met-12, June 1970.Google Scholar
  26. 21.
    J. E. Hilliard, “Grain Size Estimation,” General Electric Research Rept. No. 61-RI-2898M, 1961.Google Scholar
  27. 22.
    G. D. Miles, R. A. J. Sambell, J. Rutherford and G. W. Stephenson, Trans. Brit. Ceram. Soc., 66 (7) 319–335 (1967).Google Scholar
  28. 23.
    Edward Carnali, Jr., Mater. Res. Bull., 2 (12) 1075–1086 (1967).CrossRefGoogle Scholar
  29. 24.
    Rinoud Hanna, Amer. Ceram. Soc. Bull., 49 (5) 548–549 (1970).Google Scholar
  30. 25.(a)
    R. Rice, J. Amer. Ceram. Soc. 54 (4) 205–207 (1971).CrossRefGoogle Scholar
  31. (b).
    R. K. Stringer, C. E. Warble, and L. S. Williams, in Kinetics of Reactions in Ionic Systems, T. J. Gray and V. D. Fréchette, eds., Plenum Press, New York 53–95 (1969).Google Scholar
  32. 26.
    F. A. Nichols, J. Appl. Phys. 37 (13) 4599–4602 (1966).CrossRefGoogle Scholar
  33. 27.
    H. Schafer, Chemical Transport Reactions, Chapter 3, Academic Press, New York 1964.Google Scholar
  34. 28.
    Paul F. Eastman and Ivan B. Cutler, J. Amer. Ceram. Soc., 49 (10) 526–530 (1966).CrossRefGoogle Scholar
  35. 29.
    P. J. Wyllie, J. Amer. Ceram. Soc., 50 (1) 43–46 (1967).CrossRefGoogle Scholar
  36. 30.
    A. J. Shaler, in Sintering and Related Phenomena, G. C. Kuczynski, N. A. Hooton and C. F. Gibbon, eds., Gordon and Breach, New York, 807 (1965).Google Scholar
  37. 31.
    T. P. Hoar and J. M. Butler, Jour. Inst. of Met., 78, 351 (1950).Google Scholar
  38. 32.
    G. Bockstiegel, Powder Metallurgy, 10, 1971, 1962.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Cawas M. Kapadia
    • 1
  • Martin H. Leipold
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceUniversity of KentuckyLexingtonUSA

Personalised recommendations