Advertisement

Interfaces in Ceramic Nuclear Fuels

  • K. D. Reeve
Part of the Materials Science Research book series (MSR, volume 7)

Abstract

Internal interfaces such as grain boundaries, pore surfaces and phase boundaries play a major role in determining the mechanical and to some extent thermal properties of most ceramic bodies. Other important interfaces are those between regions of different density, chemical composition or stress state. One major problem of the ceramic engineer is to prevent the ceramic component from failing at these interfaces under service conditions. The nuclear ceramist has to face most problems encountered by his non-nuclear colleague, but the need to predict and allow for radiation-induced changes as well as those due to temperature and stress effects during service life often makes his task more difficult. This paper explores some of these problems, using the interfaces in selected all-ceramic nuclear fuels as examples.

Keywords

Nuclear Fuel Fission Product Fuel Element Diffusion Couple Fuel Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Roberts, J. Nucl. Mater., 14, 29–40 (1963).CrossRefGoogle Scholar
  2. 2.
    D. R. Ebeling and J. E. Hayes, The Instn. of Engnrs., Australia, Mech. and Chem. Eng. Trans., 1967 (May), 119-137.Google Scholar
  3. 3.
    R. W. M. D’Eye, pp. 617-628 in Proc. Symposium on Advanced and High-Temperature Gas-Cooled Reactors, Julich, 1968. IAEA, Vienna, 1969.Google Scholar
  4. 4.
    H. B. Stewart, R. C. Dahlberg, W. V. Goeddel, D. B. Trauger, P. R. Kasten and A. L. Lotts, pp. 433-447 in Vol. 4 of Proc. Fourth International Confce. on the Peaceful Uses of Atomic Energy, Geneva, 1971. UN, New York and IAEA, Vienna, 1972.Google Scholar
  5. 5.
    R. W. M. D’Eye and T. J. Heal, pp. 449-458 in Vol. 4 of Proc. Fourth International Confce. on the Peaceful Uses of Atomic Energy, Geneva, 1971. UN, New York and IAEA, Vienna, 1972.Google Scholar
  6. 6.
    L. Aumuller, K. H. Hackstein, M. Hrovat, E. Balthesen, B. Liebmann, K. Ehlers and K. Rollig, pp. 415-432 in Vol. 4 of Proc. Fourth International Confce. on the Peaceful Uses of Atomic Energy, Geneva 1971. UN, New York and IAEA, Vienna, 1972.Google Scholar
  7. 7.
    K. Veevers and W. B. Rotsey, Australian A. E. C. Report TM338 (1966).Google Scholar
  8. 8.
    K. Veevers and W. B. Rotsey, J. Mater. Sci., 1, 346–353 (1966).CrossRefGoogle Scholar
  9. 9.
    C. E. Weber, p. 295 in Progress in Nuclear Energy, Series V, Vol. 2, Pergamon Press, New York, 1954.Google Scholar
  10. 10.
    D. G. Walker and B. S. Hickman, J. Nucl. Mater., 24, 60–68 (1967).CrossRefGoogle Scholar
  11. 11.
    B. S. Hickman, W. B. Rotsey, R. J. Hilditch and K. Veevers, J. Amer. Ceram, Soc., 51 (2), 63–69 (1968).CrossRefGoogle Scholar
  12. 12.
    R. J. Hilditch, unpublished work.Google Scholar
  13. 13.
    A. E. H. Love, A Treatise on The Mathematical Theory of Elasticity, Dover Publications, New York, 1944. pp. 104 and 142.Google Scholar
  14. 14.
    K. D. Reeve and E. J. Ramm, Australian A. E. C. Report TM521 (1969).Google Scholar
  15. 15.
    G. L. Hanna and K. D. Reeve, Australian A. E. C. Report E239 (1973).Google Scholar
  16. 16.
    K. D. Reeve, Australian A. E. C. Report TM334 (1966).Google Scholar
  17. 17.
    K. D. Reeve, E. J. Ramm and C. E. Webb, Australian A. E. C. Report E216 (1971).Google Scholar
  18. 18.
    K. D. Reeve, E. J. Ramm and W. J. Buykx, J. Australian Ceram. Soc., 6 (2), 39–50 (1970).Google Scholar
  19. 19.
    K. D. Reeve, J. Nucl. Mater., 44, 285–294 (1972).CrossRefGoogle Scholar
  20. 20.
    A. Jostsons and B. S. Hickman, J. Nucl. Mater., 25, 278–283 (1968).CrossRefGoogle Scholar
  21. 21.
    J. W. Prados and J. L. Scott, Nuclear Applications, 2, 402–414 (1966).Google Scholar
  22. 22.
    J. W. Prados and J. L. Scott, Nuclear Applications, 3, 488–494 (1967).Google Scholar
  23. 23.
    J. M. Thomson, pp. 35-48 in Vol. 2, Part C, Proc. First International Confce. on Structural Mechanics in Reactor Technology, Berlin, 1971. Commission of European Communities, Brussels, 1972.Google Scholar
  24. 24.
    G. K. Williamson and P. Horner, pp. 383-389 in Proc. Third. Confce. on Industrial Carbons and Graphite, London, 1970. Society of Chemical Industry, London, 1971.Google Scholar
  25. 25.
    J. L. Kaae, J. Nucl. Mater., 29, 249–266 (1969).CrossRefGoogle Scholar
  26. 26.
    J. L. Kaae, J. Nucl. Mater., 32, 322–329 (1969).CrossRefGoogle Scholar
  27. 27.
    K. S. B. Rose, J. Inst. Nucl. Eng. (U.K.), 1971 (July/August), 95-100.Google Scholar
  28. 28.
    J. L. Kaae, D. W. Stevens and C. S. Luby, Nuclear Technology, 10, 44–53 (1971).Google Scholar
  29. 29.
    A. G. Evans, C. Padgett and R. W. Davidge, J. Amer. Ceram. Soc., 56 (1), 36–41 (1973).CrossRefGoogle Scholar
  30. 30.
    T. D. Gulden, C. L. Smith, D. P. Harmon and W. W. Hudritsch, Nuclear Technology, 16, 100–109 (1972).Google Scholar
  31. 31.
    D. Quataert and H. W. Schleicher, J. Nucl. Mater., 19, 221–233 (1966).CrossRefGoogle Scholar
  32. 32.
    R. W. Dayton, J. H. Oxley and C. W. Townley, J. Nucl. Mater., 11, 1–31, (1964).CrossRefGoogle Scholar
  33. 33.
    R. B. Evans, ORNL-3619 (1964).Google Scholar
  34. 34.
    R. A. U. Huddle, p. 637 in Proc. Symposium on Advanced and High-Temperature Gas-Cooled Reactors, Julich, 1968. IAEA, Vienna, 1969.Google Scholar
  35. 35.
    M. Dalle Donne and G. Schumacher, J. Nucl. Mater., 40, 27–40 (1971).CrossRefGoogle Scholar
  36. 36.
    W. V. Goeddel, GA Reports 3588 (1963) and 2880 (1963).Google Scholar
  37. 37.
    L. W. Graham, pp. 500-503 in Proc. Gas-Cooled Reactor Information Meeting, Oak Ridge, 1970 (CONF-700401). USAEC, Oak Ridge, 1970.Google Scholar
  38. 38.
    H. Nickel, KFA Report JUL 687 (1970).Google Scholar
  39. 39.
    C. B. Scott and O. M. Stansfield, Gulf-GA-A12081 (1972).Google Scholar
  40. 40.
    T. D. Gulden, J. Amer. Ceram. Soc., 55 (1), 14–18 (1972).CrossRefGoogle Scholar
  41. 41.
    H. Schafer, p. 40 in Chemical Transport Reactions, Academic Press, New York, 1964.Google Scholar
  42. 42.
    T. B. Lindemer and H. J. de Nordwall, 74th Annual Meeting Abstract, in Amer. Ceram. Soc. Bull., 51 (4), 390 (1972).Google Scholar
  43. 43.
    O. E. C. D. (Nuclear Energy Agency); p. 39 in “Dragon” High Temperature Reactor Project Thirteenth Annual Report, 1971–1972.Google Scholar
  44. 44.
    A. Auriol, C. David, A. Fillâtre, G. Kurka, E. Le Boulbin and J. Rappeneau, pp. 533-537 in New Nuclear Materials including Non-Metallic Fuels (Conference Proceedings, Prague 1963). IAEA, Vienna, 1963.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • K. D. Reeve
    • 1
  1. 1.Materials DivisionAustralian Atomic Energy Commission Research EstablishmentSydneyAustralia

Personalised recommendations