Phase Distribution in Solid-Liquid-Vapor Systems

  • Ilhan A. Aksay
  • Carl E. Hoge
  • Joseph A. Pask
Part of the Materials Science Research book series (MSR, volume 7)


Spatial distribution of phases in a solid-liquid-vapor system are described by the classical Young’s equation1
$${\gamma _{sv}} - {\gamma _{s\ell }} = {\gamma _{\ell v}}\cos \theta ,$$
where γ is the interfacial tension between solid-vapor (sv), solid-liquid (sl), and liquid-vapor (lv) phases, γsvsl is the driving force for wetting, and θ is the contact angle at a solid-liquid-vapor triple point as measured through the liquid phase. Furthermore, in systems where the solid phase is polycrystalline
$${\gamma _{ss}} = 2{\gamma _{sf}}\cos \frac{\Phi }{2},$$
where γss is the interfacial tension at the solid-solid grain boundary, γsf is either γsl or γsv, and Φ is the dihedral angle2 at a solid-fluid-solid triple point measured through the fluid phase. Both of these equations have been extensively used in various fields to describe the conditions of mechanical equilibrium of a capillary system under chemical non-equilibrium conditions, without explicitly considering the effect of chemical reactions on the interfacial tensions. Recently, it has been shown3 that an interfacial reaction or diffusion of a component from one bulk phase to the other across an interface results in a transient decrease in the corresponding interfacial tension by an amount equal to the free energy of the effective chemical reaction per unit area at that interface.


Contact Angle Dihedral Angle Interfacial Tension Interfacial Reaction Liquid Phase Sinter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Young, Phil. Trans. Roy. Soc. London 95, 65 (1805).CrossRefGoogle Scholar
  2. 2.
    C. S. Smith, Trans. AIME 175, 15 (1948).Google Scholar
  3. 3.
    I. A. Aksay, C. E. Hoge, and J. A. Pask, “Thermodynamics of Wetting” submitted to J. Appl. Phys.Google Scholar
  4. 4.
    J. W. Gibbs, Trans. Conn. Acad. 3, 343 (1878); also included in Scientific Papers of J. W. Gibbs (Dover Publ., Inc., New York, 1961) Vol. 1.Google Scholar
  5. 5.
    R. Defay, I. Prigogine, A. Bellemans, and D. H. Everett, Surface Tension and Adsorption (John Wiley and Sons, Inc., New York, 1966).Google Scholar
  6. 6.
    D. A. Netzel, G. Hock, and T. I. Marx, J. Colloid Sci. 19, 774 (1964).CrossRefGoogle Scholar
  7. 7.
    R. E. Johnson, Jr., J. Phys. Chem. 63, 1655 (1959).CrossRefGoogle Scholar
  8. 8.
    B. Wong, “Permeation of Silicate Liquids into Sintered Magnesia Compacts,” (M. S. Thesis) LBL-877, University of California, Berkeley, August 1972.Google Scholar
  9. 9.
    A. A. Leont’eva, Koll. Zhurn. 11, 176 (1949).Google Scholar
  10. 10.
    P. Kozakevitch, G. Urbain, and M. Sage, Rev. Met. 52, 161 (1955).Google Scholar
  11. 11.
    S. I. Popel, O. A. Esin, G. F. Konovalov, and N. S. Smirnov, Dokl. Akad. Nauk SSSR 112, 104 (1957), or Proc. Acad. Sci. USSR — Phys. Chem. 112, 27 (1957).Google Scholar
  12. 12.
    M. Humenik, Jr. and W. D. Kingery, J. Am. Ceram. Soc. 37, 18 (1954).CrossRefGoogle Scholar
  13. 13.
    W. M. Armstrong, A. C. D. Chaklader, and M. L. A. De Cleene, J. Am. Ceram. Soc. 45, 407 (1962)CrossRefGoogle Scholar
  14. W. M. Armstrong, A. C. D. Chaklader, and D. J. Rose, Trans. AIME 227, 1109 (1963)Google Scholar
  15. A. C. D. Chaklader, W. M. Armstrong, and S. K. Misra, J. Am. Ceram. Soc. 51, 630 (1968).CrossRefGoogle Scholar
  16. 14.
    A. A. Zhukhovitskii, V. A. Grigorian, and E. Mikhalik, Dokl. Akad. Nauk SSR 155, 392 (1964), or Proc. Acad. Sci. USSR — Phys. Chem. 155, 255 (1964).Google Scholar
  17. 15.
    J. E. McDonald and J. G. Eberhart, Trans. AIME 233, 512 (1965).Google Scholar
  18. 16.
    V. I. Kostikov and B. S. Mitin, Sb., Mosk. Inst. Stali Splavov, No. 49, 114 (1968).Google Scholar
  19. 17.
    I. A. Aksay, A. P. Raju, and J. A. Pask, “Wetting of Magnesium Oxide by Silicate Liquids,” submitted to J. Am. Ceram. Soc.Google Scholar
  20. 18.
    J. T. Davies and E. K. Rideal, Interfacial Phenomena (Academic Press, New York, 1963), 2nd ed., p. 360.Google Scholar
  21. 19.
    The free energy change at the solid-vapor interface is designated as Δgsl instead of Agsv since, assuming that composition of the liquid at the interface remains essentially constant, compositional variations are only in the solid due to components diffusing from the liquid and thus the nature of the reactions at the solid-vapor and the solid-liquid interfaces do not differ appreciably.Google Scholar
  22. 20.
    R. D. Carnahan, T. L. Johnston, and C. H. Li, J. Am. Ceram. Soc. 41, 343 (1958)CrossRefGoogle Scholar
  23. J. A. Champion, B. J. Keene, and J. M. Sillwood, J. Mater. Sci. 4, 39 (1969).CrossRefGoogle Scholar
  24. 21.
    W. D. Kingery, J. Appl. Phys. 30, 301 (1959).CrossRefGoogle Scholar
  25. 22.
    J. Frenkel, Zhur. Tech. Fiz. 9, 305 (1945)Google Scholar
  26. — J. Phys. (USSR) 9 385 (1945)Google Scholar
  27. F. V. Lenel, The Physics of Powder Metallurgy, W. E. Kingston, ed. (McGraw-Hill Book Company, New York, 1951), p. 238.Google Scholar
  28. 23.
    C. E. Hoge and J. A. Pask, “Kinetics of Liquid Phase Sintering,” unpublished.Google Scholar
  29. 24.
    G. H. Gessinger, H. F. Fischmeister, and H. L. Lukas, Acta Met. 21, 715 (1973).CrossRefGoogle Scholar
  30. 25.
    E. F. Osborn and A. Muan, Phase Diagrams for Ceramists, E. M. Levin, C. R. Robbins, and H. F. McMurdie, eds. (The Am. Ceram. Soc., Inc., Columbus, Ohio, 1964), p. 210, Fig. 598.Google Scholar
  31. 26.
    A. M. Alper, R. N. McNally, P. H. Ribbe, and R. C. Doman, J. Am. Ceram. Soc. 45, 263 (1962)CrossRefGoogle Scholar
  32. A. M. Alper, R. N. McNally, R. C. Doman, and F. G. Keihn, J. Am. Ceram. Soc. 47, 30 (1964)CrossRefGoogle Scholar
  33. J. C. Willshee and J. White, Trans. Brit. Ceram. Soc. 66, 541 (1967).Google Scholar
  34. 27.
    A. Navrotsky and O. J. Kleppa, J. Inorg. Nucl. Chem. 30, 479 (1968).CrossRefGoogle Scholar
  35. 28.
    W. P. Whitney, II, and V. S. Stubican, J. Phys. Chem. Solids 32, 305 (1971).CrossRefGoogle Scholar
  36. 29.
    S. L. Blank and J. A. Pask, J. Am. Ceram. Soc. 52, (1969).Google Scholar
  37. 30.
    H. Tagai, S. Iwai, T. Iseki, and M. S. Tokio, Radex-Rundschau 4, 577 (1965).Google Scholar
  38. 31.
    E. W. Washburn, Phys. Rev. 17, 273 and 374 (1921).CrossRefGoogle Scholar
  39. 32.
    B. Jackson, W. F. Ford, and J. White, Trans. Brit. Ceram. Soc. 62 577 (1963)Google Scholar
  40. B. Jackson and W. F. Ford, Trans. Brit. Ceram. Soc. 65, 19 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Ilhan A. Aksay
    • 1
  • Carl E. Hoge
    • 1
  • Joseph A. Pask
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations