Catalysis in Correlation with the Detailed Electronic Structure of the Surface

  • Thomas J. Gray
Part of the Materials Science Research book series (MSR, volume 7)


The earliest suggesions of an inter-relationship between the electronic constitution of solids and the adsorption, desorption, and reaction processes which occur at their surfaces came in the work of Pisarzheveskii1 and Langmuir2. These relationships are also implicit in the work of Roginski3 and were in some measure amplified by Wagner4 and Nyrop5. Formulation of a correlation between electronic structure and catalysis was simultaneously developed by Garner and coworkers6 and by Volkenshtein7 which, in association with the rapid advances made in solid state theory, particularly as applied to semiconductors, has led to the almost universal acceptance of a general correlation between the electronic constitution of a catalyst and the adsorption and reaction processes which occur at its surface. Nevertheless, the oversimplified model adopted by many authors mitigates against a wider utilization of the general concepts in endeavouring to tailor catalysts for specific applications. There is a marked reluctance to accept the complexity of a realistic model deriving from modern concepts of the solid state. It has been repeatedly emphasized that in many particulars the minority electronic defects have greater significance than the majority defects as the rate-controlling species. Drawing on classical terminology they may be regarded as the “promoters”.


Electronic Constitution Catalyst Material Surface Recombination Velocity Electronic Energy State High Energy Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Pisarzhevskii, in Theories Electronique de la Catalyse, F. F. Volkenshtein, ed., Masson, Paris, 1961.Google Scholar
  2. 2.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918).CrossRefGoogle Scholar
  3. 3.
    S. Z. Roginskii and E. I. Shultz, Ukr. Chem. J. 3, 177 (1928).Google Scholar
  4. S. Z. Roginskii and F. F. Volkenshtein, Zh. Fiz. Khim. 29, 483 (1955).Google Scholar
  5. 4.
    K. W. Wagner, Ann. Phys. 40, 817 (1913).CrossRefGoogle Scholar
  6. 5.
    J. W. Nyrop, Phys. Rev. 39, 967 (1932).CrossRefGoogle Scholar
  7. 6.
    Chemistry of the Solid State, W. E. Garner, ed., Academic Press, New York, 1955. T. J. Gray, Defect Solid State, Wiley (Interscience, New York, 1957).Google Scholar
  8. 7.
    F. F. Volkenshtein, Advanes in Catalysis, Vol. 12, 189. Electron Theory of Catalysis on Semiconductors, Fitzmatgiz, 1960. Kinetika i Kataliz 2, 481 (1961). Trans. Faraday Soc. 31, 209 (1961). Surface Properties of Semiconductors, A. N. Frumkin, ed., Consultants Bureau, New York, 1964, p. 279.Google Scholar
  9. 8.
    A. A. Balandin, Modern Status of the Multiplet Theory of Heterogeneous Catalysis (In Russian), Plenum Press.Google Scholar
  10. 9.
    I. E. Tamm, Zh. Eksp. Teor. Fiz., 3, 34 (1933).Google Scholar
  11. 10.
    E. Shockley, Phys. Rev., 56, 317 (1939).CrossRefGoogle Scholar
  12. 11.
    R. H. Kingston, J. App. Phys., 27, 101 (1956).CrossRefGoogle Scholar
  13. 12.
    J. Bardeen, Phys. Rev., 71, 717 (1947).CrossRefGoogle Scholar
  14. 13.
    T. J. Gray, Defect Solid State, Wiley (Interscience) New York, 1957.Google Scholar
  15. T. J. Gray and S. D. Savage, Disc. Far. Soc, 28, 159 (1959).CrossRefGoogle Scholar
  16. T. J. Gray, N. G. Masse and C. C. McCain, J. Phys. Chem., 63, 472 (1959).CrossRefGoogle Scholar
  17. T. J. Gray, Actes 2nd Congr. Intern. Catalyse, Paris, 1960, Editions Techniq. Paris, 1961, p. 1561.Google Scholar
  18. T. J. Gray and D. O. Carpenter, Proc. 3rd Intern. Congr. Catalysis, Amsterdam, 1964, Wiley, New York, 1965, p. 463.Google Scholar
  19. T. J. Gray and P. Amigues, Surface Science, 13 (1969) 209–221 (1968).CrossRefGoogle Scholar
  20. T. J. Gray, Measurements of Semiconductivity, Photoconductivity and Associated Properties of Catalysts, Academic Press, Inc., New York, 1968.Google Scholar
  21. 14.
    F. S. Stone, Disc. Faraday Soc., 29, 211 (1959).Google Scholar
  22. F. S. Stone, and T. I. Barry, Proc Roy. Soc., A255, 124 (1960).Google Scholar
  23. 15.
    K. Hauffe and H. J. Engell, Z. Electrochem., 56, 366 (1952); 57, 762 (1953).Google Scholar
  24. 16.
    T. J. Gray, Chemistry of the Solid State, Academic Press, New York, 1955.Google Scholar
  25. 17.
    I. E. Mikheikin, A. I. Maschchenki and U. B. Kazanskii, 8, 1363 (1967).Google Scholar
  26. 18.
    N. B. Wong and J. H. Lunsford, J. Chem. Phys., 55, 3007 (1971).CrossRefGoogle Scholar
  27. 19.
    T. Kiwan, Proc Int. Congr. Catalysis, Amsterdam 1964, p. 493.Google Scholar
  28. 20.
    A. J. Tench, JCS Faraday (1), 68, 1169; 1181 (1972)CrossRefGoogle Scholar
  29. — JCS Faraday (1), 69, 857 (1973).CrossRefGoogle Scholar
  30. 21.
    V. B Kazanskii, Int. Symp. on Heterogeneous Catalysis, Roermonde, 1967.Google Scholar
  31. V. A. Shvets, V. M. Vorotinsev and V. B. Kazanskii, Kinetika i Kataliz, 10, 356 (1969).Google Scholar
  32. 22.
    J. O. Cope and I. D. Campbell, JCS Faraday (1), 69, 1 (1973).CrossRefGoogle Scholar
  33. 23.
    R. J. Kokes, Experimental Methods in Catalytic Research, R. B. Anderson, ed., Academic Press, New York, 1968.Google Scholar
  34. 24.
    M. L. Hair, Infrared Spectroscopy in Surface Chemistry, Dekker, New York (1967).Google Scholar
  35. 25.
    C. H. Amberg, The Solid Gas Interface, E. Alison Flood, ed., Dekker, New York (1967).Google Scholar
  36. 26.
    T. J. Gray, Experimental Methods in Catalytic Research, R. B. Anderson, ed., Academic Press, New York, 1968.Google Scholar
  37. 27.
    D. J. Scheiber, J. Res. Natl. Bur. Std., C65, 23 (1961).Google Scholar
  38. 28.
    C. G. B. Garrett and W. H. Brattain, Phys. Rev., 99, 376 (1955).CrossRefGoogle Scholar
  39. 29.
    R. H. Kingston and S. F. J. Neustadter, J. App. Phys., 26, 718 (1955).CrossRefGoogle Scholar
  40. 30.
    A. Many and D. Gerlich, Phys. Rev., 107, 404 (1957).CrossRefGoogle Scholar
  41. 31.
    Y. F. Novototskii-Vlasov, Trudy (Lebedev), 48, 1 (1969).Google Scholar
  42. 32.
    I. K. Kiikoin and M. N. Naskov, Phys. Z. USSR, 5, 586 (1934).Google Scholar
  43. 33.
    J. Frenkel, Phys. Z. USSR, 5, 586 (1934)Google Scholar
  44. — ibid. 8, 185 (1935).Google Scholar
  45. 34.
    F. Urbach, Zitzber. Akad, Wiss. Wien, Math.-Naturw. Klasse, 139, 353 (1930).Google Scholar
  46. 35.
    J. T. Randall and M. F. H. Wilkins, Proc. Roy. Soc., London A184, 390 (1945).Google Scholar
  47. 36.
    G. F. J. Garlick, “Photoconductivity” in Encyclopedia of Physics, Springer-Verlag, Berlin (1956).Google Scholar
  48. 37.
    L. Heijne, Philips Res. Repts. Sup. 4, 99 (1961).Google Scholar
  49. 38.
    D. G. Semak, D. V. Chepur and V. F. Zolotarev, Fiz. Tverd, Tela 9, 1242 (1967).Google Scholar
  50. 39.
    T. J. Gray and N. Lowery, Disc. Far. Soc., 1972 (In Press).Google Scholar
  51. 40.
    T. J. Gray and H. G. Oswin, Catalysis, State University of New York College of Ceramics, at Alfred University, Alfred, New York, 1958.Google Scholar
  52. 41.
    J. M. Bridges and G. Houghton, J. Am. Chem. Soc., 81, 1334–8 (1959).CrossRefGoogle Scholar
  53. 42.
    T. J. Gray and N. Lowery, 4th Can. Congress on Catalysis, Halifax, May 1971.Google Scholar
  54. 43.
    F. M. Nelson and F. T. Eggertsen, Determination of Surface Area Adsorption Measurements by a Continuous Flow Method, Shell Development Co., Emeryville, California.Google Scholar
  55. 44.
    H. J. Dittfeld and J. Voigt, Phys. Stat. Sol., 3, 1941 (1963).CrossRefGoogle Scholar
  56. 45.
    R. H. Bube, Photoconductivity in Solids, John Wiley, New York (1960).Google Scholar
  57. 46.
    Maenhout-Van der Vorst and F. Van Craeynest, Phys. Stat. Sol. 9, (1965) 749.CrossRefGoogle Scholar
  58. 47.
    M. A. Seitz, W. F. Tinter and W. M. Hirthe, Mats. Res. Bull., 6, 275 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Thomas J. Gray
    • 1
  1. 1.Atlantic Industrial Research InstituteHalifaxCanada

Personalised recommendations