Advertisement

Thermal Stress Crack Stability and Propagation in Severe Thermal Environments

  • D. P. H. Hasselman
Part of the Materials Science Research book series (MSR, volume 5)

Abstract

A fracture-mechanical analysis is presented for stability criteria and propagation behavior of thermal stress cracks in brittle ceramics in environments so severe that initiation cannot be avoided. It is based on a mechanical model consisting of a rigidly constrained, uniformly cooled thin flat plate with a uniform distribution of microcracks; results are qualitatively similar to those obtained for a three-dimensional body with penny-shaped cracks. High stability of thermal stress cracks is attained in materials with high values of surface fracture energy, and low values of thermal expansion and Young’s modulus. On catastrophic propagation of an initially short crack, the final crack is subcritical and has a length which is independent of material properties but depends only on the initial crack length and the crack density. It is suggested that materials with very high thermal shock resistance can be developed by synthesizing materials with high densities of microcracks.

Keywords

Crack Length Thermal Shock Crack Density Thermal Shock Resistance Short Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Kingery, J. Am. Ceram. Soc., 38 [1] 3–15 (1955).CrossRefGoogle Scholar
  2. 2.
    W. B. Crandall and J. Ging, J. Am. Ceram. Soc., 38 44 (1955).CrossRefGoogle Scholar
  3. 3.
    D. P. H. Hasselman, J. Am. Ceram. Soc., 46 [5] 229–34 (1963).CrossRefGoogle Scholar
  4. 4.
    W. R. Buessum, Sprechsaal, 93 137–41 (1960).Google Scholar
  5. 5.
    D. P. H. Hasselman, J. Am. Ceram. Soc., 50 [9] 454–57 (1967).CrossRefGoogle Scholar
  6. 6.
    B. Schwartz, J. Am. Ceram. Soc., 35 [12] 325–33 (1952).CrossRefGoogle Scholar
  7. 7.
    E. Glenny and M. G. Royston, Trans. Brit. Ceram. Soc., 57 [10] 645–77 (1958).Google Scholar
  8. 8.
    R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc., 38 [1] 33–37 (1955).CrossRefGoogle Scholar
  9. 9.
    R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc., 39 [11] 377–83 (1956).CrossRefGoogle Scholar
  10. 10.
    W. B. Crandall and J. Ging, J. Am. Ceram. Soc., 38 [1] 44–54 (1955).CrossRefGoogle Scholar
  11. 11.
    D. P. H. Hasselman, J. Am. Ceram. Soc., 46 [11] 535–40 (1963).CrossRefGoogle Scholar
  12. 12.
    J. Nakayama and M. Ishizuka, Bull. Am. Ceram. Soc., 45 [7] 666–69 (1966).Google Scholar
  13. 13.
    D. P. H. Hasselman, J. Am. Ceram. Soc., 52 [11] 600–7 (1969).CrossRefGoogle Scholar
  14. 14.
    J. P. Berry, J. Mech. Phys. Solids, 8, 206–17 (1960).Google Scholar
  15. 15.
    A. A. Griffith, Phil. Trans. Roy. Soc. (London) A221 [4] 163–98 (1920).Google Scholar
  16. 16.
    A. A. Griffith, pp. 55-63 in Proc. First Intern. Congr. Appl. Mech., Delft, 1924.Google Scholar
  17. 17.
    D. P. H. Hasselman, J. Am. Ceram. Soc. (to be published).Google Scholar
  18. 18.
    M. S. Tacvorian, Soc. Franc, Ceram. Bull., 29 20–40 (1955).Google Scholar
  19. 19.
    W. R. Morgan, J. Am. Ceram. Soc. 14 [12] 913–23 (1931).CrossRefGoogle Scholar
  20. 20.
    R. C. Rossi, Bull. Am. Ceram. Soc., 48 [7] 736–37 (1969).Google Scholar
  21. 21.
    E. A. Bush and F. A. Hummel, J. Am. Ceram. Soc., 41 [6] 189–95 (1958); ibid. 42 [8] 388–91 (1959).Google Scholar
  22. 22.
    O. L. Bowie, J. Math. Phys., 35 [1] 60–71 (1956).Google Scholar
  23. 23.
    C. W. Parmelee and A. E. il. Westman, J. Am. Ceram. Soc. 11 [12] 884–95 (1928).Google Scholar
  24. 24.
    O. Bartsch, Ber. Deut. Keram. Ges., 18 [11] 465–89 (1937).Google Scholar
  25. 25.
    S. Kato and H. Okuda, Nagoya Kogyo Gijutsu Shikensko Hokoku 8 [5] 37–43 (1959).Google Scholar
  26. 26.
    R. C. Rossi and R. D. Carnahan, in Ceramic Microstructures, R. M. Fulrath and J. A. Pask (eds), John Wiley and Sons, Inc., (1968), pp. 620 – 635.Google Scholar
  27. 27.
    D. P. H. Hasselman and P. T. B. Shaffer, WADC-TR 60 - 749, (April 1962)Google Scholar
  28. 28.
    Y. Baskin, C. A. Arenberg and J. H. Handwerk, Bull. Am. Ceram. Soc., 38 [7] 345–49 (1959).Google Scholar
  29. 29.
    J. R. Tinklepaugh, in Cermets, Reinhold Corp. (1960), pp. 170–180.Google Scholar
  30. 30.
    P. L. Gutshall and P. E. Gross, Eng. Fracture Mechanics, 1, 463–71 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • D. P. H. Hasselman
    • 1
  1. 1.Lehigh UniversityBethlehemUSA

Personalised recommendations