The Use of Computer Experiments to Predict Radiation Effects in Solid Materials

  • J. R. BeelerJr.
Conference paper
Part of the Materials Science Research book series (MSR, volume 5)


Prediction of radiation effects requires an analysis of defect annealing in addition to the analysis of the primary damage state directly produced by irradiation. The transient and steady states associated with defect production and annealing depend upon the particular types of defect configurations possible under irradiation conditions. Many of the important defect configurations are much different in character than those which can be produced thermally. Experience has shown that the analysis of radiation effects must be based on discrete particle interaction rather than continuum models, providing one of the main reasons for using the computer experiment method in radiation effects prediction. The methods used to simulate atomic collision cascades in solids and to simulate the crucial initial stages in the subsequent defect annealing process are described and illustrated with results from computer experiment simulations. Special emphasis is placed upon the influence of ceramic- like precipitates on defect production and annealing in reactor structural materials.


Frenkel Pair Computer Prediction Collision Cascade Recombination Region Defect Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Beeler, Jr.; pp. 1–128 in Physics of Many Particle Systems. E. Meeron. Gordon and Breach, 1967.Google Scholar
  2. 2.
    J. R. Beeler, Jr.; pp. 295–476 in Advances in Materials Research, Vol. 4. H. Herman. John Wiley and Son, 1970.Google Scholar
  3. 3.
    J. R. Beeler, Jr., J. Appl. Phys. 35 2226 (1964).CrossRefGoogle Scholar
  4. 4.
    J. R. Beeler, Jr.; p. 86 in ASTM Special Technical Publication No. 380. Flow and Fracture of Metals and Alloys in Nuclear Environments, (1965).Google Scholar
  5. 5.
    J. R. Beeler, Jr., J. Appl. Phys. 37 3000 (1966).CrossRefGoogle Scholar
  6. 6.
    J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Phys. Rev. 120 1229 (1960).CrossRefGoogle Scholar
  7. 7.
    J. R. Beeler, Jr., Phys. Rev. 150 470 (1966).CrossRefGoogle Scholar
  8. 8.
    C. Erginsoy, G. H. Vineyard and A. Englert, Phys. Rev. 133 A595 (1964).CrossRefGoogle Scholar
  9. 9.
    J. R. Beeler, Jr. and D. G. Besco; p. 43 in Radiation Damage in Solids, Vol. 1. International Atomic Energy Agency, Vienna, 1962.Google Scholar
  10. 10.
    J. R. Beeler, Jr. and D. G. Besco, J. Phys. Soc. Japan 18, Supplement 3, 159 (1963).Google Scholar
  11. 11.
    J. R. Beeler, Jr., J. Nuc. Mat. 15 1 (1965).CrossRefGoogle Scholar
  12. 12.
    J. R. Beeler, Jr. and D. G. Besco, J. Appl. Phys. 34 2873 (1963).CrossRefGoogle Scholar
  13. 13.
    D. N. Seidman, Cornell University (Private Communication).Google Scholar
  14. 14.
    M. T. Robinson and O. S. Gen, Phys. Rev. 132 2385 (1963).CrossRefGoogle Scholar
  15. 15.
    W. P. Chun, M. F. Beeler and J. R. Beeler, Jr., (Unpublished Work, 1970),Google Scholar
  16. 16.
    D. G. Doran, Radiation Effects 2 249 (1970).CrossRefGoogle Scholar
  17. 17.
    R. Perrin and R. Bullough; p. 52 in The Nature of Small Defect Clusters, Vol. 1 (AERE-R5269). Ed. by M. J. Makin, (1966).Google Scholar
  18. 18.
    R. A. Johnson, Phil. Mag. 16 553 (1967).CrossRefGoogle Scholar
  19. 19.
    J. R. Beeler, Jr. and R. A. Johnson, Phys. Rev. 156 677 (1967).CrossRefGoogle Scholar
  20. 20.
    J. R. Beeler, Jr.; pp. 621–652 in Lattice Defects and Their Interactions. R. R. Hasiguti. Gordon and Breach, 1967.Google Scholar
  21. 21.
    J. R. Beeler, Jr., M. F. Beeler and J. C. W. Hsu, AEC Quarterly Report ORO-3912-2 (1969), p. 20.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • J. R. BeelerJr.
    • 1
  1. 1.North Carolina State UniversityRaleighUSA

Personalised recommendations