Electrode and Insulation Materials in Magnetohydrodynamic Generators

  • Larry L. Fehrenbacher
  • Norman M. Tallan
Conference paper
Part of the Materials Science Research book series (MSR, volume 5)


The operation and service environment of open and closed cycle MED generators is described. The performance characteristics of candidate electrode and insulation materials and their peculiar limitations with respect to conductivity, mechanical and electrochemical erosion, thermal shock resistance, maximum allowable surface temperature, compositional stability (polarization and contamination), thermionic emission, and overall service life are discussed. Special emphasis is given to problems associated with the performance of various ceramic insulators and electrodes used in open cycle generators. Recommendations for research studies on specific ceramic compositions and systems showing potential as MED generator channel materials are offered.


Transference Number Thermal Shock Resistance High Oxygen Partial Pressure Lanthanum Chromite Ceramic Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kusko, IEEE Spectrum 5 (4) 75–80 (1968).CrossRefGoogle Scholar
  2. 2.
    M. Petrick, IEEE Spectrum 2 (3) 137–151 (1965).CrossRefGoogle Scholar
  3. 3.
    R. Rosa and F. Hals, Industrial Research, 69–72, June (1968).Google Scholar
  4. 4.
    G. Sutton and A.Sherman; pp. 340–88 in Engineering Magnetohydro-dynamics. McGraw-Hill, Inc., New York, 1965.Google Scholar
  5. 5.
    Ibid, pp. 471–528.Google Scholar
  6. 6.
    J. Dicks etal. pp. 16–28, Preprint Volume, Eleventh Symposium on Engineering Aspects of Magnetohydrohynamic. Calif. Inst. Technology, March 24–26, 1970.Google Scholar
  7. 7.
    J. Klepeis and J. Louis; pp. 62–64, Ibid.Google Scholar
  8. 8.
    R. Rosa etal., MHD Power Generation Status and Prospects for Open-Cycle Systems, Avco Everett AMP 295, November 1969.Google Scholar
  9. 9.
    M. Petrick, IEEE Spectrum 2 3 137–151 (1965).CrossRefGoogle Scholar
  10. 10.
    R. Rosa and J. Louis, “Position Paper on Closed Cycle MHD Power Generation,” Avco Everett Research Lab.Google Scholar
  11. 11.
    Joint ENEA/IAWA International Liaison Group on MHD Electrical Power Generation, “MHD Electrical Power Generation,” The 1969 Status Report.Google Scholar
  12. 12.
    P. Curtis etal. “Electrodes and Insulators for Open-Cycle MHD Generators,” Preprint, Symposium on Magnetohydrohynamic Electrical Power Generator, Warsaw, Poland, 24–30 July (1968).Google Scholar
  13. 13.
    E. Robinson, J. Ballad, and J. Yerrell “The Performance of Metal Electrodes Under Various Open Cycle MHD Conditions,” Ibid.Google Scholar
  14. 14.
    J. Koester et al.; pp. 54–60 in Preprint Volume, Eleventh MHD Symposium. California Institute of Technology, Pasadena, Calif., 1970.Google Scholar
  15. 15.
    V. Gordon etal., High Melting Oxide and Carbide Materials for MHD Generator Electrode Walls, Preprint, Warsaw Symposixjm (1968).Google Scholar
  16. 16.
    A. Borison, “The Behavior of High Melting Metallic Materials in an Argon Plasma Flow,” Preprint, Warsaw Symposium (1968).Google Scholar
  17. 17.
    T. Morikawa, etal., “Study on Semi-Hot Wall Duct for MHD Generator”, Preprint, Warsaw S3miposium (1968).Google Scholar
  18. 18.
    D. Yerouchalmi, “Etudes de Materiaux Destines a Equiper des Tuyeres de Conversion Magnetohydrodynamique de L’Energie Thermique des Gaz de Combusion en Energie Electrique”, Thesis, Docteur-Ingenieur, De L’Universite de Paris, France (1970).Google Scholar
  19. 19.
    C. Tedmon, H. Spacil, and S. Mitoff, J. Electrochem. Soc., 116 (9) 1170–1175 (1969).CrossRefGoogle Scholar
  20. 20.
    Translation of “The Institute of High Temperatures of the USSR Academy of Sciences,” “The Most Important Results of Scientific Research in 1969,” Nauka Press, Moscow, 1970, 62 pp.Google Scholar
  21. 21.
    D. Yerouchalmi, “Hot Electrodes for Open Cycle MHD Generators,” Preprint Volume, Eighth Symposium on Engineering Aspects of Magnetohydrodynamics, Stanford, Calif., March 28–30, 1967.Google Scholar
  22. 22.
    R. Casselton, “The Nature and Consequence of Current Blackening in Stabilized Zirconia,” Preprint, Warsaw S3miposium (1968).Google Scholar
  23. 23.
    L. Fehrenbacher, L. Jacobson, and C. Lynch, in Proceedings of the Fourth Rare Earth Research Conference. Gordon and Breach, New York. April 22–25, 1964.Google Scholar
  24. 24.
    D. Meadowcroft, “The Electrical Resistivity of Some Castable Zirconias,” to be published in J. Mat. Science.Google Scholar
  25. 25.
    R. Chapman, D. Meadowcroft, and A. Walkden, “Properties Relevant to MHD Applications of Some Pyrochlore Structured Zirconates and Stannates,” to be published.Google Scholar
  26. 26.
    A. Kuznetsov, E. Keler and Fan Fu-k’ang, Zhumal Prikladnoi Khimii, 38 (2) 233–241 (1965).Google Scholar
  27. 27.
    G. Kuezinski, R. Parrot, and D. Yerouchalmi “Study of Corrosion in Magnesia Crystals by Atkaline Salts,” Preprint, Warsaw Symposium (1968).Google Scholar
  28. 28.
    R. Wang and D. Yerouchalmi, Rev. Hautes Temper et Refrat. t. 3, 205–214 (1966).Google Scholar
  29. 29.
    M. Foex, “Study of Oxides Having Extremely Good Refractory Properties and Capable of Being Used in MHD Electrodes,” Preprint, Warsaw S3nnposium (1968).Google Scholar
  30. 30.
    A. Romanov, “Refractory Concretes as Electrically Insulating Material for MHD Generator Ducts,” Warsaw Symposium (1968).Google Scholar
  31. 31.
    L. Fehrenbacher, Ph.D. Thesis, Electrical Conductivity and Defect Structure of Ceria- Zirconia Solid Solutions, University of Illinois, Urbana, Illinois, Feb. (1969).Google Scholar
  32. 32.
    S. Pal’guev and Z. Volchenkova, “Electrical Conductivity and Transport Numbers in the CeO -ZrOa System,” Translation Russian Journal of Physical Chemistry, 34 (2) 211–13 (1960).Google Scholar
  33. 33.
    M. Asquiedge et al., “Physics-Chemical Properties of Binary Solid Electrolytes,” Translated from Rev. Hautes Temper et Refract. 6 35–44 (1969).Google Scholar
  34. 34.
    B. Steele, B. Powell, and P. Moody, Proc. Brit. Ceram. Soc., 10 87–102 (1968).Google Scholar
  35. 35.
    J. Teno, “Long Duration Electrodes for Open Cycle MHD Generators,” Eighth MHD Symposium, Stanford, (1967).Google Scholar
  36. 36.
    J. Yerrell and E. Robinson, “The Development of Arc Electrodes for Open-Cycle MHD Use,” Warsaw Symposium (1968).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Larry L. Fehrenbacher
    • 1
  • Norman M. Tallan
    • 1
  1. 1.Aerospace Research LaboratoriesWright-Patterson Air Force BaseUSA

Personalised recommendations