Advertisement

Effect of Temperature on Electrical Conductivity and Transport Mechanisms in Sapphire

  • W. J. Lackey
Conference paper
Part of the Materials Science Research book series (MSR, volume 5)

Abstract

The mechanisms of electrical conduction in single crystal alumina were investigated. An oxygen concentration cell was used to separate the direct current electrical conductivity into its ionic and electronic components over the temperature range 1000–1500°C. Transport number and electrical conductivity measurements were made in an oxidizing atmosphere while guarding against both surface and gas phase conduction.

The fraction of the electrical conductivity which was contributed by transport of ions decreased from approximately 0.6 at 1000°C to 0.01 to 0.02 at 1500°C. Comparison of the ionic component of conductivity with values calculated from aluminum and oxygen self- diffusion data led to the conclusion that both ion species contribute to conduction with the aluminum contribution probably being the larger of the two. At the higher temperatures conduction is predominantly electronic and probably p-type.

Keywords

Electrical Conductivity Ionic Conductivity Diffusion Data Transport Number Guard Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 379–387 (1957).CrossRefGoogle Scholar
  2. 2.
    F. A. Kröger, Proc. Brit. Ceram. Soc. 1 167–171 (1964).Google Scholar
  3. 3.
    S. P. Mitoff, J. Chem. Phys. 36 1383–1389 (1962).CrossRefGoogle Scholar
  4. 4.
    C. Wagner, Z. Physik. Chem. 21 25–41 (1933).Google Scholar
  5. 5.
    C. Wagner; in International Committee of Electrochemical Thermo dynamics and Kinetics, Proceedings of the Seventh Meeting. Butterworths Scientific Publications, London (1955).Google Scholar
  6. 6.
    C. Wagner, Z. Elektrochem. 60 4–7 (1956).Google Scholar
  7. 7.
    S. V. Karpachev and S. F. Pal’guev, Trans. Inst. Electrochem. 1 63–72 (1961).Google Scholar
  8. 8.
    F. A. Kröger, The Chemistry of Imperfect Crystals, John F. Wiley and Sons, New York, 1964.Google Scholar
  9. 9.
    H. Schmalzried, Z. Physik. Chem. 38 87–102 (1963).Google Scholar
  10. 10.
    V. P. Luzgin etal., Ogneupory 30, 42–44 (1965). (English transl. NASA TTF-10,093) National Aeronautic and Space Adminsitration, Washington, D. C.Google Scholar
  11. 11.
    S. P. Mitoff, Ionic Conductivity of Single Crsytal AI2O3, General Electric Research Laboratory Report 65-RL-(3964M), Schenectady, N. Y. (1965).Google Scholar
  12. 12.
    T. Matsumura, Can. J. Phys. 44 1685–1698 (1968).CrossRefGoogle Scholar
  13. 13.
    J. J. Mills, Research on Electrical Conductivity and Conduction Mechanisms in Alumina, Technical Documentary Report ARL 68–0154, Wright-Patterson Air Force Base, Ohio (1968).Google Scholar
  14. 14.
    D. C. Glower and R. C. Heckman, J. Chem. Phys. 41 877–879 (1964).CrossRefGoogle Scholar
  15. 15.
    S. F. Pal’guev and A. D. Neuimin, Soviet Phys.-Solid State 4 629–632 (1962).Google Scholar
  16. 16.
    C. F. Cline, J. Carlberg, and H. W. Newkirk, J. Amer. Ceram. Soc. 50 55–56 (1967).CrossRefGoogle Scholar
  17. 17.
    H. J. aeBruin, G. M. Watson, and C. M. Blood, J. Appl. Phys. 37 4543–4549 (1966).CrossRefGoogle Scholar
  18. 18.
    C. F. Cline etal. in Mass Transport in Oxides. National Bureau of Standards Special Publication 296, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1968.Google Scholar
  19. 19.
    A. D. Neuimin and S. F. Pal’guev, Dokl. Akad. Nauk. Tadzh. SSR 143 1388–1391 (1962). [Proc. Acad. Sci. Chem, Sect., English transl. 143 315–318 (1962).]Google Scholar
  20. 20.
    E. L. Holverson and C. J. Kevane, J. Chem. Phys. 44 3692–3696 (1966).CrossRefGoogle Scholar
  21. 21.
    S. F. Pal’guev and A. D. Neuimin, Trans. Inst. Electrochem. 1 90–96 (1961).Google Scholar
  22. 22.
    V. B. Tare and H. Schmalzried, Z. Physik. Chem. 43 30–32 (1964).CrossRefGoogle Scholar
  23. 23.
    C. H. Steele and C. B. AlcOck, Trans. Met. Soc. AIME 233 1359–1367 (1965).Google Scholar
  24. 24.
    H. A. Johansen and J. G. Cleary, J. Electrochem. Soc. 111 100–103 (1964).CrossRefGoogle Scholar
  25. 25.
    A. W. Smith, F. W. Meszaros, and C. D. Amata, J. Am. Ceram. Soc. 49 240–244 (1966).CrossRefGoogle Scholar
  26. 26.
    H. Schmalzried, J. Chem. Phys. 33 940 (1960).CrossRefGoogle Scholar
  27. 27.
    S. P. Mitoff, J. Chem. Phys. 33 941 (1960).CrossRefGoogle Scholar
  28. 28.
    S. P. Mitoff, J. Chem. Phys. 41 2561–2562 (1964).CrossRefGoogle Scholar
  29. 29.
    Ford Motor Company, Science 154 (3751) 828 (1966).Google Scholar
  30. 30.
    Ford Motor Company, Mater. Des. Eng. 64 (5) 19–20 (1966).Google Scholar
  31. 31.
    Ford Motor Company, Mater. Des. Eng. 65 (3) 14–16 (1967).Google Scholar
  32. 32.
    A. Ezis, J. G. Burt, and R. A. Krakowski, J. Am. Ceram. Soc. 53 521–524 (1970).CrossRefGoogle Scholar
  33. 33.
    M. F. Lasker and R. A. Rapp, (in English), Z. Physik. Chem. 49 198–221 (1966).CrossRefGoogle Scholar
  34. 34.
    C. B. Alcock and B.C.H. Steele; in Science of Ceramics, Vol. 2. G. H. Steward. Academic Press, New York, 1965.Google Scholar
  35. 35.
    H. Peters and H. H. Mäbius, Z. Physik. Chem. 209 298–309 (1958).Google Scholar
  36. 36.
    J. M. Wimmer, L. R. Bidwell, and N. M. Tallan, J. Am. Ceram. Soc. 50 198–201 (1967).CrossRefGoogle Scholar
  37. 37.
    E. C. Subbarao, P. H. Sutter, and J. Hrizo, J. Am. Ceram. Soc. 48 443–446 (1965).CrossRefGoogle Scholar
  38. 38.
    J. E. Bauerle, J. Chem. Phys. 45 4162–4166 (1966).CrossRefGoogle Scholar
  39. 39.
    R. W. Vest and N. M. Tallan, J. Am. Ceram. Soc. 48 472–475 (1965).CrossRefGoogle Scholar
  40. 40.
    N. M. Tallan, R. W. Vest, and H. C. Graham; in Materials Science Research, Vol. 2. H. M. Otte and S. R. Locke. Plenum Press, New York, 1965.Google Scholar
  41. 41.
    W. D. Kingery, J. Pappis, M. E. Doty, and D. C. Hill, J. Am. Ceram. Soc. 42 393–398 (1959).CrossRefGoogle Scholar
  42. 42.
    L. A. Simpson and R. E. Carter, J. Am. Ceram. Soc. 49 139–144 (1966).CrossRefGoogle Scholar
  43. 43.
    H. SHhmalzried, Z. Elektrochem. 66 572–576 (1962).Google Scholar
  44. 44.
    L. Heyne; in Mass Transport in Oxides. Ed. by J. B. Wachtman and A. D. Franklin, National Bureau of Standards Special Publication 296, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1968.Google Scholar
  45. 45.
    A. N. Gerritsen; in Handbuch der Physik., Vol. 19. S. Flügge, Springer-Verlag, Berlin, 1956.Google Scholar
  46. 46.
    W. C. Dunlap, Jr.; in Methods of Experimental Physics, Vol. 6. Lark-Horovitz and V. A. Johnson. Academic Press, New York, 1959.Google Scholar
  47. 47.
    J. L. Pentecost; in High Temperature Technology, Proceedings of an International S3niiposium on High Temperature Technology, Stanford Research Institute, Butterworth, Inc., Washington, D.C. 1964.Google Scholar
  48. 48.
    W. J. Lackey, Electronic and Ionic Conductivity in Alumina, Ph.D. Thesis, North Carolina State University, Raleigh, N.C. University Microfilms, Ann Arbor, Michigan, 1970.Google Scholar
  49. 49.
    J. Cohan, Am. Ceram. Soc. Bull. 38 441–446 (1959).Google Scholar
  50. 50.
    J. A. Champion, Proc. Brit. Ceram. Soc. 10 51–62 (1968).Google Scholar
  51. 51.
    J. P. Loup and A. D. Anthony, Rev. Hautes Temp. Refractaires 1 15–20 (1964).Google Scholar
  52. 52.
    J. P. Loup and A. D. Anthony, Ibid. 193–199 (1964).Google Scholar
  53. 53.
    D. W. Peters, L. Feinstein, and C. Peltzer, J. Chem. Phys. 42 2345–2346 (1965).CrossRefGoogle Scholar
  54. 54.
    A. J. Moulson and P. Popper, Proc. Brit. Ceram. Soc. 10 41–50 (1968).Google Scholar
  55. 55.
    J. D. Mackenzie, J. Am. Ceram. Soc. 47 211–214 (1964).CrossRefGoogle Scholar
  56. 56.
    T. Matsumura, personal communication, 1967.Google Scholar
  57. 57.
    F. A. Kroger, personal communication, 1969.Google Scholar
  58. 58.
    Y. Gishi and W. D. Kingery, J. Chem. Phys. 33 480–486 (1960).CrossRefGoogle Scholar
  59. 59.
    A. E. Paladina and W. D. Kingery, J. Chem. Phys. 37 957–962 (1962).CrossRefGoogle Scholar
  60. 60.
    S. Dasgupta and J. Hart, J. Appi. Phys. 16 725–726 (1965).Google Scholar
  61. 61.
    C. E. Birchenall, in Mass Transport in Oxides. Ed. by J. B. Wachtman and A. D. Franklin, National Bureau of Standards Special Publication 296, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 1968.Google Scholar
  62. 62.
    P. J. Harrop, J. Appi. Phys. 16, 729–730 (1965).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • W. J. Lackey
    • 1
  1. 1.North Carolina State UniversityRaleighUSA

Personalised recommendations