Advertisement

The Process of Hydrostatic Compaction of B2O3 Glass

  • N. Mizouchi
  • A. R. Cooper
Part of the Materials Science Research book series (MSR, volume 5)

Abstract

Upon application of high pressure, glass exhibits both elastic and anelastic behavior even at room temperatures. The consequence of anelastic behavior has been recognized as an “irreversible” densification. The technique developed permitted measurement of the instantaneous volume of B2O3 glass under hydrostatic pressure up to 22 kbar. It was observed that (1) anelastic volume strain is highly nonlinear in pressure, (2) apparent bulk viscosity may be lower than 1015poise at onset of pressure application and tends to approach infinitely large value as time advances, and (3) more than one ordering parameter is necessary to be consistent with observed compaction under pressure.

Keywords

Linear Variable Differential Transformer Fictive Temperature Volume Viscosity Fractional Volume Change Simple Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Bridgman, Am. J. Sci., 7 81 (1924).CrossRefGoogle Scholar
  2. 2.
    P. W. Bridgman, Am. J. Sci., 10 359 (1925).CrossRefGoogle Scholar
  3. 3.
    P. W. Bridgman and I. Simon, J. Appl. Phys., 24 [4] 405 (1953).CrossRefGoogle Scholar
  4. 4.
    O. L. Anderson, J. Appl. Phys., 27 [8] 943 (1956).CrossRefGoogle Scholar
  5. 5.
    H. M. Cohen and R. Roy, Phys. Chem. Glasses, 6 [5] 149 (1965).Google Scholar
  6. 6.
    J. D. Mackenzie, J. Am. Ceram. Soc., 46 [10] 461 (1963).CrossRefGoogle Scholar
  7. 7.
    W. Poch, Phys. Chem. Glasses, 8 [4] 129 (1967).Google Scholar
  8. 8.
    J. Amdt and D. Stoffler, Phys. Chem. Glasses, 10 [3] 117 (1969).Google Scholar
  9. 9.
    R. M. Kimmel, Ph.D. Thesis, M. I. T. (1968).Google Scholar
  10. 10.
    F. Birch, E. C. Robertson and S. P. Clark, Jr., Ind. Eng. Chem. 49 [12] 1965 (1957).CrossRefGoogle Scholar
  11. 11.
    C. E. Weir and L. Shartsis, J. Am. Ceram. Soc., 39 [9] 299 (1955).CrossRefGoogle Scholar
  12. 12.
    Lamb, Hydrodynamics, Cambridge University Press, 1932.Google Scholar
  13. 13.
    R. O. Davies and G. O. Jones, Advances in Phys. 2, 370 (1953).CrossRefGoogle Scholar
  14. 14.
    A. J. Kovacs, Trans. Soc. Rheology, 5, 285 (1961).CrossRefGoogle Scholar
  15. 15.
    P. B. Macedo and A. Napolitano, J. Res. NBS 71A [3] 231 (1967).Google Scholar
  16. 16.
    R. W. Douglas and G. A. Jones, J. Soc. Glass Tech. 32, 309 (1948).Google Scholar
  17. 17.
    H. N. Ritland, J. Am. Ceram. Soc., 39 [12] 403 (1956).CrossRefGoogle Scholar
  18. 18.
    S. Spinner and A. Napolitano, J. Res. NBS 70A [2] 147 (1966).Google Scholar
  19. 19.
    O. S. Narayanaswamy, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • N. Mizouchi
    • 1
  • A. R. Cooper
    • 1
  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations