Advertisement

The Effect of Nonstoichiometry on Creep of Oxides

  • A. H. Clauer
  • M. S. Seltzer
  • B. A. Wilcox
Part of the Materials Science Research book series (MSR, volume 5)

Abstract

High temperature creep in oxides is often quite sensitive to stoichiometry, primarily because creep is often a diffusion-controlled process, and diffusion occurs by the movement of point defects. The point defect concentration depends on both the type and amount of impurities present, and on the ambient oxygen pressure. Therefore, oxide stoichiometry is particularly dependent upon the environment at high temperatures, where diffusion is rapid. The relation between the creep behavior and stoichiometry in oxides is reviewed in detail.

Keywords

Slip System Creep Rate Creep Behavior Oxygen Diffusion Stress Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Kroger, The Chemistry of Imperfect Crystals. North Holland Publishing Company, Amsterdam. 1964.Google Scholar
  2. 2.
    S. Anderson, B. Collen, U. Kuylensierna, and M. Magneli, Acta Chem. Scand., 11 1641 (1957).CrossRefGoogle Scholar
  3. 3.
    I. V. Vinokurov and V. A. loffe, Soc. Phys. Solid State, 11 207 (1969).Google Scholar
  4. 4.
    R. E. Carter and F. D. Richardson, J. Metals, 6 1244 (1954).Google Scholar
  5. 5.
    W. K. Chen and R. A. Jackson, J. Phys. Chem. Solids, 30 1309 (1969).CrossRefGoogle Scholar
  6. 6.
    L. Himmel, N. F. Mehl and C. E. Birchenall, J. Metals, 5 827 (1953).Google Scholar
  7. 7.
    D. A. Venkatu and L. E. Poteat, Mater. Sei. Eng., 5 258 (1969/1970).Google Scholar
  8. 8.
    R. Haul and G. Dumbgen, J. Phys. Chem. Solids, 26 1 (1965).CrossRefGoogle Scholar
  9. 9.
    R. J. Hawkins and C. B. Alcock, J. Nucl. Mat., 26 112 (1968).CrossRefGoogle Scholar
  10. 1O.
    J. F. Marin and P. Contamin, J. Nucl. Mat., 30 16 (1969).CrossRefGoogle Scholar
  11. 11.
    D. N. Polubayarinov, E. Ya. Shapiro, V. S. Bakunov, and F. A. Akopov, Inorganic Materials, 2 336 (1966).Google Scholar
  12. 12.
    A. H. Clauer, M. S. Seltzer, and B. A. Wilcox, submitted to J. Mat. Sei.Google Scholar
  13. 13.
    A. H. Clauer, M. S. Seltzer, and B. A. Wilcox, to be published.Google Scholar
  14. 14.
    B. Ilschner, B. Reppich, and E. Riecke, Faraday Society Disc., 38 243 (1964).CrossRefGoogle Scholar
  15. 15.
    B. Reppich, Phys. Stat. Sol., 20 69 (1967).Google Scholar
  16. 16.
    W. M. Hirthe and J. O. Brittain, J. Amer. Ceram. Soc., 46 411 (1963).CrossRefGoogle Scholar
  17. 17.
    N. E. Farb, O. W. Johnson, and P. Gibbs, J. Appl. Phys., 36 1746 (1965).CrossRefGoogle Scholar
  18. 18.
    M. S. Seltzer, A. H. Clauer and B. A. Wilcox, Battelle Report No. BMI-1886, Battelle Mem. Inst. Columbus, Ohio, 197O.Google Scholar
  19. 19.
    W. M. Armstrong and W. R. Irvine, J. Nucl. Mat., 9 121 (1963).CrossRefGoogle Scholar
  20. 2O.
    B. Fisher and D. S. Tannhauser, J. Electrochem. Soc., 111 1194 (1964).CrossRefGoogle Scholar
  21. 21.
    P. Haasen; p. 701 in Dislocation Dynamics. Ed. by A. R. Rosenfield, G. T. Hahn, A. L. Bement, and R. I. Jaffee, McGraw-Hill Book Company, New York, 1968.Google Scholar
  22. 22.
    E. Peissker, P. Haasen and H. Alexander, Phil. Mag., 7 1279 (1961).CrossRefGoogle Scholar
  23. 23.
    G. A. Webster, Phil. Mag., 14 775 (1966).CrossRefGoogle Scholar
  24. 24.
    J. Gilman, J. Appl. Phys., 36 2772 (1965).CrossRefGoogle Scholar
  25. 25.
    B. Reppich, P. Haasen and B. Ilschner, Acta Met., 12 1283 (1964).CrossRefGoogle Scholar
  26. 26.
    C. R. Barrett and W. D. Nix, Acta Met., 13 1247 (1965).CrossRefGoogle Scholar
  27. 27.
    N. F. Mott, Creep and Fracture of Metals at Elevated Temperatures, HMSO, London (1956) p. 21.Google Scholar
  28. 28.
    J. Weertman, Trans. AIME 218 207 (1960).Google Scholar
  29. 29.
    J. D. Eshelby, C. W. A. Newey, P. L. Pratt, and A. B. Lidiard, Phil. Mag., 3 75 (1958).CrossRefGoogle Scholar
  30. 3O.
    K. N. Strafford and H. Gartside, J. Mat. Sci., 4 760 (1969).CrossRefGoogle Scholar
  31. 31.
    R. C. Gifkins and K. U. Snowden, Nature, 212 916 (1966); and J. Amer. Ceram. Soc., 51 69 U968 ).Google Scholar
  32. 32.
    F. R. N. Nabarro, p. 75 in Report on Conference on Strength of Solids, Phys. Soc. of London, 1948.Google Scholar
  33. 33.
    C. Herring, J. Appl. Phys., 21 437 (1950).CrossRefGoogle Scholar
  34. 34.
    R. L. Coble, J. Appl. Phys., 34 1679 (1963).CrossRefGoogle Scholar
  35. 35.
    R. Raj and M. F. Ashby, Met. Trans. 2 1113 (1970, and M. F. Ashby, R. Raj and R. C. Gifkins, Scripta Met., 4 737 (1970).CrossRefGoogle Scholar
  36. 36.
    G. Vagnard and J. Manenc, Compt. Rend., 255 104 (1962).Google Scholar
  37. 37.
    P. Kofstad and A. Z. Hed, J. Electrochem. Soc., 115 102 (1968).CrossRefGoogle Scholar
  38. 38.
    R. W. G. Wyckoff, Crystal Structures, John Wiley and Sons, New York, 1963.Google Scholar
  39. 39.
    M. E. Straumanis, T. Ejima and W. J. James, Acta Cryst., 14 493 (1961).CrossRefGoogle Scholar
  40. 4O.
    P. Kofstad, J. Less Common Metals, 13 635 (1967).CrossRefGoogle Scholar
  41. 41.
    J. B. Wachtman, Jr., and L. H. Maxwell, J. Amer. Ceram. Soc., 40 377 (1957).CrossRefGoogle Scholar
  42. 42.
    K. H. G. Ashbee and R. E. Smallman, J. Amer. Ceram. Soc., 46 211 (1963).CrossRefGoogle Scholar
  43. 43.
    J. S. Nadeau, Report No. 67–C-243, General Electric Research and Development Center, Schenectady, New York, June, 1967.Google Scholar
  44. 44.
    D. J. M. Bevan and J. Kordis, J. Inorg. Nucl. Chem., 26 1509 (1964).CrossRefGoogle Scholar
  45. 45.
    C. J. Kevane, Phys. Rev., 133 1431 (1964).CrossRefGoogle Scholar
  46. 46.
    P. K. Kofstad and A. Z. Hed, J. Amer. Ceram. Soc., 50 681 (1967).CrossRefGoogle Scholar
  47. 47.
    F. A. Akopov and D. N. Polubayarinov, Ogerepory [4] 37 (1965).Google Scholar
  48. 48.
    L. Lynds, W. A. Yound, J. S. Mohl, and G. G. Libowitz; p. 58 in Advances in Chem. Series No. 39, Washington, D. C. (1963). 49 E. A. Aitken, H. C. Brassfield, and R. E. Frjrxell, p. 435 in Thermodynamics, IAEA, Vol. 2, Vienna (1966).Google Scholar
  49. 5O.
    B. T. M. Willis, Proc. British Ceram. Soc., 1 9 (1964).Google Scholar
  50. 51.
    W. M. Armstrong, A. R. Causey and W. R. Sturrock, J. Nucl. Mat., 19 42 (1966).CrossRefGoogle Scholar
  51. 52.
    J. Belle, J. Nucl. Mat., 30 3 (1969).CrossRefGoogle Scholar
  52. 53.
    R. J. Hawkins and C. B. Alcock, J. Nucl. Mat., 26 112 (1968).CrossRefGoogle Scholar
  53. 54.
    C. R. Barrett, A. J. Ardell, and O. D. Sherby, Trans. AIME, 230 200 (1964).Google Scholar
  54. 55.
    K. W. Lay, General Electric Research and Development Center, Report No. 70–C-064, February, 197O.Google Scholar
  55. 56.
    J. M. Marin, H. Michaud, and P. Contamin, Compt. Rend., 264 1633 (1967).Google Scholar
  56. 57.
    H. Matzke, J. Nucl. Mat., 30 26 (1969).CrossRefGoogle Scholar
  57. 58.
    A. B. Lidiard, J. Nucl. Mat., 19 106 (1966).CrossRefGoogle Scholar
  58. 59.
    R. A. Wolfe and S. F. Kaufman, Report No. WAPD-TM-587, October 1967.Google Scholar
  59. 6O.
    L. E. Poteat and C. S. Yust; p. 646 in Ceramic Microstructures. Ed. by R. M. Fulrath and J. A. Pask, John Wiley and Sons, New York, 1968.Google Scholar
  60. 61.
    P. E. Bohaboy, R. R. Asamoto, and A. E. Conti, Report No. GEAP-10054, May, 1969.Google Scholar
  61. 62.
    M. S. Seltzer, A. H. Clauer and B. A. Wilcox, J. Nucl. Mat., 34 351 (1970).CrossRefGoogle Scholar
  62. 63.
    W. M. Armstrong, W. R. Irvine and R. H. Martinson, J. Nucl. Mat., 7, 133 (1962).CrossRefGoogle Scholar
  63. 64.
    W. M. Armstrong and W. R. Irvine, J. Nucl. Mat., 12 26l (1964).Google Scholar
  64. 65.
    C. S. Yust and C. J. McHargue, Bull. Amer. Ceram. Soc., 49 851 (1970).Google Scholar
  65. 66.
    J. Weertman, Trans. ASM, 61 681 (1968).Google Scholar
  66. 67.
    F. R. N. Nabarro, Phil. Mag., 16 231 (1967).CrossRefGoogle Scholar
  67. 68.
    A. H. Cottrell, Dislocation and Plastic Flow in Crystals, Oxford Univ. Press, Oxford, 1953.Google Scholar
  68. 69.
    A. D.Whapham and B. E. Sheldon, Phil. Mag., 12 1179 (1965).CrossRefGoogle Scholar
  69. 7O.
    C. Ronchi and H. Blank, Nuclear Metallurgy, 17 175 (1970).Google Scholar
  70. 71.
    R. Scott, A. R. Hall and J. J. Williams, J. Nucl. Mat., 1 39 (1959).CrossRefGoogle Scholar
  71. 72.
    P. R. Mettens, “The Creep Strength of Polycrystalline Uranium Dioxide”, Thesis, Rensselear Polytechnic Institute, Troy, New York, 1964.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • A. H. Clauer
    • 1
  • M. S. Seltzer
    • 1
  • B. A. Wilcox
    • 1
  1. 1.Battelle Memorial InstituteColumbus LaboratoriesColumbusUSA

Personalised recommendations