Ceramic Fibres for the Reinforcement of Gas Turbine Blades

  • J. E. Bailey
  • H. A. Barker
Part of the Materials Science Research book series (MSR, volume 5)


Continuous filament reinforcement of nickel base alloy turbine blades with SiC, W, or Al203 has been considered as a means of improving creep resistance at high temperatures (up to 1200°0). SiC is readily available in fibre form, but reacts chemically with the matrix; tungsten wires are excessively dense; and alumina fibres have not been available until recently. Extrusion or pulling of molten alumina was tried but abandoned at an early stage. Extrusion and sintering of a very concentrated aqueous dispersion of hydrated alumina has been moderately successful. Bend strengths of about 80 x 103 psi at 85% theoretical density are better than most commercially available sintered alumina rods of larger diameter and are capable of withstanding stresses >10 x 103 psi for 100 hr at 1100°C, Fabrication of composite blades using polycrystalline alumina (or continuous sapphire single crystal) fibres has not proved successful by liquid infiltration since severe damage is caused to the fibres.


Turbine Blade Tungsten Wire Ceramic Fibre Alumina Hydrate Bend Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Burwood-Smith, Fibre Science and Technology, 3 (2) 105–17 (1970).CrossRefGoogle Scholar
  2. 2.
    K. F. A. Walles, Proc. Brit. Ceramic Soc. Vol. 15, 157–171 (1970).Google Scholar
  3. 3.
    A. W. H. Morris and A. Burwood-Smith, Fibre Science and Technology, 3, (1) 53–78 (1970).CrossRefGoogle Scholar
  4. 4.
    A. W. H. Morris and A. Burwood-Smith, Fibre Strengthened Nickel-base Alloy. Paper presented at AGARD 36th Meeting P.E.P. on High Temperature Turbines, Florence, September 1970.Google Scholar
  5. 5.
    M. I. Kliman, Watertown Arsenal Laboratories. Tech. Report WAL TR 371 /50, 1962.Google Scholar
  6. 6.
    N. J. Parratt Explosives Research and Development Establishment, Waltham Abbey, England. Private Communication.Google Scholar
  7. 7.
    S. A. Bortz (IITRI, Chicago) “Refractory fiber composite systems”. Paper presented at 21st Annual Meeting of the Reinforced Plastics Div. of the Soc. of Plastics Industry, Chicago.Google Scholar
  8. 8.
    S. A. Bortz and P. C. Li (IITRI, Chicago) “Continuous Filament Refractory Fibers”. Paper presented at 22nd Annual Meeting of the Reinforced Plastics Division of the Soc. of Plastics Industry, Washington, D. C.Google Scholar
  9. 9.
    N. D. Nazarenko, V. F. Nechitailo and N. I. Vlasko. Soviet Powder Metallurgy 4 265–67 (1969).CrossRefGoogle Scholar
  10. 10.
    Babcock and Wilcox Company (U.S.A.), British Patent No. 1, 141, 207. (1969).Google Scholar
  11. 11.
    B. H. Hamling, A. W. Nauman and W. H. Dresher. Applied Polymer Syinposia, 9 387–94 (1969).Google Scholar
  12. 12.
    B. H. Hamling, Union Carbide Corporation (U.S.A.) British Patent No. 1, 144, 033 (1969).Google Scholar
  13. 13.
    I. Wizon and J. A. Robertson, J. Polymer Sci. C. (19) 267–81 (1967).Google Scholar
  14. 14.
    I. Wizon, Applied Polymer Symposia 9 395–409 (1969).Google Scholar
  15. 15.
    Rolls Royce Ltd. British Patent No. 1, 069, 472 (1967).Google Scholar
  16. 16.
    Tyco Laboratories, Massachussetts Bulletin 102 (1969).Google Scholar
  17. 17.
    H. D. Blakelock, N. A. Hill, S. A. Lee and C. Goatcher. Proc. Brit. Ceram. Soc. No. 15 69–83 (1970).Google Scholar
  18. 18.
    J. M. Fletcher and C. J. Hardy. Chemistry and Industry 48–51, 13 Jan 1968.Google Scholar
  19. 19.
    J. E. Bailey and N. A. Hill. Proc. Brit. Ceramic. Soc. No. 15 15–35 (1970).Google Scholar
  20. 20.
    R. L. Coble and W. D. Kingery. J. Amer. Ceram. Soc. 39 (1) 377–85 (1956).Google Scholar
  21. 21.
    S. C. Camiglia. J. Amer. Ceram. Soc. 48 (11) 580–83. (1965).CrossRefGoogle Scholar
  22. 22.
    A. A. Griffith, Phil Trans. Roy. Soc. (London) Vol. A. 221, 163 (1920).Google Scholar
  23. 23.
    P. L. Gutshalland G. E. Gross, Eng. Fracture Mech. Vol. 1 463–71 (1969).CrossRefGoogle Scholar
  24. 24.
    R. W. Davidge and G. Tappin, Proc. Brit. Ceramic Soc. No. 15 p. 47–60 (1970).Google Scholar
  25. 25.
    E. M. Passmore, R. M. Spriggs and T. Vasilos, J. Amer. Ceram. Soc. 48 (1) 1–7 (1965).CrossRefGoogle Scholar
  26. 26.
    R. M. Spriggs, T. Vasilos and L. A. Brissette; pp. 313–44 in Materials Science Research, Vol. 3. W. W. Kriegel and Hayne Palmour III, Eds., Plenum Press, New York, 1967.Google Scholar
  27. 27.
    B. J. Baggaley, A. S. Malin and E. R. McCartney. J. Australian Ceram. Soc. 4 (2) 46–50 (1967).Google Scholar
  28. 28.
    P. Vergnon, F. Juillet and S. J. Teichner. Rev. Int. Hautes Tempér et Refract., 3. 409–19 (1966).Google Scholar
  29. 29.
    D. P. H. Hasselman and R. M. Fulrath. J. Amer. Ceram. Soc. 50 (8) 399–404 (1967).Google Scholar
  30. 30.
    G. P. Tilly and K. F. A. Walles, The Engineer p. 551, 27 Oct. 1967.Google Scholar
  31. 31.
    K. F. A. Walles, National Gas Turbine Establishment, Private Communication.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • J. E. Bailey
    • 1
  • H. A. Barker
    • 1
  1. 1.University of SurreyGuildford, SurreyEngland

Personalised recommendations