Deformation Behavior of Alumina at Elevated Temperatures

  • Paul F. Becher
Part of the Materials Science Research book series (MSR, volume 5)


The thermomechanical behavior and microstructural observations of several polycrystalline alumina bodies varying from 2–80 µm in grain size with typical purities of ⩾99% tested in compression at T ⩾1210°C are presented. The mechanical behavior of alumina is considered in terms of these results and similar investigations of the behavior of sapphire bicrystals. Plastic deformation is observed to be related to dislocations, mechanical twinning and/or grain boundary shear. In general, decreasing the grain size gives rise to a transition in deformation mechanisms and leads to increased mechanical strength. Impurities, however, strongly modify this relationship and are instrumental in enhancing grain boundary shear processes in alumina.


Crack Initiation Slip System Triple Point Deformation Twinning Basal Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. G. Langdon and J. A. Pask; pp. 53–127 in High Temperature Oxides, Part III, Ed. by A. M. Alper, Academic Press, New York, 1970.Google Scholar
  2. 2.
    R. M. Fulrath and J. A. Pask, Ceramic Microstructures, John Wiley & Sons, Inc. New York, 1966.Google Scholar
  3. 3.
    J. J. Burke, N. L. Reed, and V. Weiss. Ultrafine Grain Ceramics. Syracuse University Press, Syracuse, N. Y. 1970.Google Scholar
  4. 4.
    F. M. Vahldiek and S. A. Mersol, Eds. Anistropy in Single-Crystal Refractory Compounds. Plenum Press, New York, 1968.Google Scholar
  5. 5.
    T. Vasilos and E. M. Passmore, pp. 406–430 in Ref. 2.Google Scholar
  6. 6.
    A. H. Heuer, Proc. Brit. Ceram. Soc. 15 173–184 (1970).Google Scholar
  7. 7.
    P. F. Becher, “Deformation Substructure in Polycrystalline Alumina”, to be published in J. Mater. Sei.Google Scholar
  8. 8.
    R. L. Bell and T. G. Langdon,- pp. 115–137 in Interfaces Conference, Ed. R. C. Gifkins, Butterworths, Sidney (Australia), 1969.Google Scholar
  9. 9.
    P. F. Becher and H. Palmour III, J. Am. Ceram. Soc. 53 (3) 119–123 (1970).CrossRefGoogle Scholar
  10. 10.
    P. F. Becher and H. Palmour III, “Grain Boundary Shear in a-Al20 3”, submitted for publication.Google Scholar
  11. 11.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, Electron Microscopy of Thin Crsytals. Butterworths, London, 1965.Google Scholar
  12. 12.
    N. J. Tighe and A. Hyman, pp. 121–136 in Ref. 4.Google Scholar
  13. 13.
    N. J. Tighe, pp. 109–133 in Ref. 3.Google Scholar
  14. 14.
    B. J. Hockey, “Plastic Deformation of Alumina by Indentation and Abrasion”, submitted for publication.Google Scholar
  15. 15.
    B. J. Hockey, “Observation on Mechanically Abraded Aluminum Oxide Crystals”, in Proceedings of Symposium on the Science of Ceramic Machining & Surface Finishing, National Bureau of Standards, Gaithersburg, Md., Nov. 1970. (in press).Google Scholar
  16. 16.
    W. H. Rhodes and R. M. Cannon, “Microstructure Studies of Refrac tory Polycrystalline Oxides”, Summary Report AVSD-0038–70–RR, Contract N00019–69–C-0198, Dec. 1969.Google Scholar
  17. 17.
    H. Gleiter, E. Hornbogen and G. Baro, Acta. Met. 16, 1053–1067 ( 1968CrossRefGoogle Scholar
  18. 18.
    Y. Ishida and M. Henderson-Brown, Acta Met. 15, 857–860 (1967).CrossRefGoogle Scholar
  19. 19.
    A. H. Heuer, R. M. Cannon and N. J. Tighe pp. 339–360 in Ref. 3.Google Scholar
  20. 20.
    A. H. Heuer, Phil Mag. 13, 379–393 (1966).CrossRefGoogle Scholar
  21. 21.
    H. Conrad, K. Janowski and E. Stofel, Trans. AIME 233, 255–256 ( 1965Google Scholar
  22. 22.
    R. L. Bertolloti, “Creep of Aluminum Oxide Single Crystals and Bicrystals”, Ph.D. Thesis, Department of Ceramic Engineering, University of Washington, Seattle, 1970.Google Scholar
  23. 23.
    P. D. Bayer and R. E. Cooper, J. Mater. Sei. 2 (3) 301–302 (1967).CrossRefGoogle Scholar
  24. 24.
    A. S. Teleman and A. J. McEvily, Jr., Fracture of Structural Materials. John Wiley and Sons, Inc., New York, 1967.Google Scholar
  25. 25.
    R. W. Cahn; pp. 1–28 in Deformation Twinning. R. E. Reed-Hill J. P. Hirth and H. C. Rogers, Gordon and Breach Scientific Publishers, New York, 1964.Google Scholar
  26. 26.
    P. B. Prices pp. 41–130 in Electron Microscopy and Strength of Crystals. Edby G. Thomas and J. Washburn, Interscience Publishers, Inc., New York, 1963.Google Scholar
  27. 27.
    S. Maruyama, J. Phys. Soc. Japan 15, 1248–1251 (1960).Google Scholar
  28. 28.
    R. E. Reed-Hill, pp. 295–320 in Ref. 23.Google Scholar
  29. 29.
    H. Palmour III, W. W. Kriegel, P. F. Becher and M. L. Huckabee, “Grain Boundary Sliding in Alumina Bicrystals”, Final Report ORD-3328–17, Contract AT-(40–1)-3328, July 1970.Google Scholar
  30. 30.
    A. H. Heuer, R. F. Firestone, and J. D. Snow, “Non-basal Slip in Aluminum Oxide (AI2O3)”, Tech. Rept. 2, Contract N00014–67–A- 0404–0003, NR 032–058, Sept. 1970.Google Scholar
  31. 31.
    J. B. Holt5 pp. 169–190 in Sintering and Related Phenomena, Edby G. C. Kuczynski, N. A. Hooton and C. F. Gibbon. Gordon and Breach Scientific Publishers, New York, 1967.Google Scholar
  32. 32.
    B. J. Wuensch and T. Vasilos, J. Am. Ceram. Soc. 48 (8), 433–436 (1966).CrossRefGoogle Scholar
  33. 33.
    J. B. Holt and R. H. Condit; pp. 13–30 in Materials Science Research Vol. 3. Edby W. W. Kriegel and H. Palmour III, Plenum Press, New York, 1966.Google Scholar
  34. 34.
    K. R. Riggs and M. Wuttig, J. Appl. Phys. 40 (11) 4682–4683 (1969).CrossRefGoogle Scholar
  35. 35.
    M. F. Ashby and R. Raj, “On Continum Aspects of Grain Boundary Sliding and Diffusional Creep”, Tech. Rept. 2, Contract N00014–67–A-0298–0020, NR-031–732, June, 1970.Google Scholar
  36. 36.
    M. F. Ashby and R. Raj, “The Use of a Bubble Model to Study Stress- induced Migration and Sliding of Grain Boundaries”, Tech. Report 556, Contract N00014–67–A-0298–0010, Nr-031–503, 1968.Google Scholar
  37. 37.
    H. Conrad; pp. 218–269 in Mechanical Behavior of Materials at Elevated Temperatures. Edby J. E. Dom, McGraw-Hill Book Co., Inc., New York, 1961.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Paul F. Becher
    • 1
  1. 1.U. S. Naval Research LaboratoryUSA

Personalised recommendations