Advertisement

Creep Mechanisms in Ceramic Materials at Elevated Temperatures

  • Terence G. Langdon
  • Donald R. Cropper
  • Joseph A. Pask
Part of the Materials Science Research book series (MSR, volume 5)

Abstract

The creep of ceramic materials at elevated temperatures may take place by the movement of dislocations within the lattice, by grain boundary sliding, and/or by stress-directed diffusion either through the lattice or along the grain boundaries. Other accommodation mechanisms, such as grain boundary separations, may also occur. Some indication of the significant creep mechanism may be obtained by determining the dependence of steady-state creep rate on stress, grain size, and temperature. A comparison is made between the predictions arising from the theoretical models and recent experimental data obtained on several materials in both single crystal and polycrystalline forms.

Keywords

Creep Rate Creep Behavior Creep Mechanism Diffusional Creep Lithium Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. R. N. Nabarro; pp. 75–90 in Rpt. of a Conf. on Strength of Solids, (University of Bristol, July 1947 ). The Physical Society, London, 1948.Google Scholar
  2. 2.
    C. Herring, J. Appi. Phys. 21 (5) 437–45 (1950).CrossRefGoogle Scholar
  3. 3.
    R. L. Coble, J. Appi. Phys. 34 (6) 1679–82 (1963).CrossRefGoogle Scholar
  4. 4.
    M. F. Ashby, R. Raj and R. C. Gifkins, Scripta Met. 4 (9) 737–41 (1970).CrossRefGoogle Scholar
  5. 5.
    J. Weertman, J. Appi. Phys. 28 (3) 362–64 (1957).CrossRefGoogle Scholar
  6. 6.
    J. Weertman, J. Appi. Phys. 28 (10) 1185–89 (1957).CrossRefGoogle Scholar
  7. 7.
    R. Changv pp. 275–85 in Physics and Chemistry of Ceramics. Edby C. Klingsberg. Gordon and Breach, New York, 1963.Google Scholar
  8. 8.
    F. R. N. Nabarro, Phil. Mag. 16 (140) 231–37 (1967).CrossRefGoogle Scholar
  9. 9.
    T. G. Langdon, Phil. Mag. 22 (178) 689–700 (1970).CrossRefGoogle Scholar
  10. 10.
    A. K. Mukherjee, J. E. Bird, and J. E. Dom, Trans. Amer. Soc. Metals 62 (1) 155–79 (1969).Google Scholar
  11. 11.
    N. Balasubramanian and J. C. M. Li, J. Mat. Sci. 5 (5) 434–44 (1970).CrossRefGoogle Scholar
  12. 12.
    I. M. Lifshitz, Soviet Physics JETP 17 (4) 909–20 (1963).Google Scholar
  13. 13.
    R. C. Gifkins and T. G. Langdon, Scripta Met. 4 (8) 563–66 (1970).CrossRefGoogle Scholar
  14. 14.
    R. C. Gifkins and K. U. Snowden, Nature (London) 212 (5065) 916–17 (1966).CrossRefGoogle Scholar
  15. 15.
    G. G. Bentle and R. M. Kniefel, J. Amer. Ceram. Soc. 48 (11) 570–77 (1965).CrossRefGoogle Scholar
  16. 16.
    M. H. Leipold, J. Amer. Ceram. Soc. 49 (9) 498–502 (1966).CrossRefGoogle Scholar
  17. 17.
    J. Weertman, Trans. Amer. Soc. Metals 61 (4) 681–94 (1968).Google Scholar
  18. 18.
    W. R. Cannon and 0. D. Sherby, J. Amer. Ceram. Soc. 53 (6) 346–49 (1970).Google Scholar
  19. 19.
    J. M. Dupouy, Phil. Mag. 22 (175) 205–7 (1970).CrossRefGoogle Scholar
  20. 20.
    R. L. Bell and T. G. Langdon; pp. 115–37 in Interfaces Conference. Ed. by R. C. Gifkins. Butterworths, Sydney, 1969.Google Scholar
  21. 21.
    T. G. Langdon, Mat. Sci. Eng. 7 (2) 117–18 (1971).Google Scholar
  22. 22.
    M. F. Ashby, Scripta Met. 3 (11) 837–42 (1969).Google Scholar
  23. 23.
    E. M. Passmore, R. H. Duff and T. Vasilos, J. Amer. Ceram. Soc. 49 (11) 594–600 (1966).CrossRefGoogle Scholar
  24. 24.
    T. G. Langdon, J. Nucl. Mat. 38 (1) 88–92 (1971).CrossRefGoogle Scholar
  25. 25.
    H. W. Green, J. Appl. Phys. 41 (9) 3899–3902 (1970).CrossRefGoogle Scholar
  26. 26.
    D. R. Cropper, “Creep in LiF Single Crystals at Elevated Temperatures”, UCRL-20350, University of California at Berkeley, (Ph.D. Thesis), 1970.Google Scholar
  27. 27.
    D. R. Cropper and T. G. Langdon, Phil. Mag. 18 (156) 1181–92 (1968).CrossRefGoogle Scholar
  28. 28.
    T. G. Langdon and J. A. Pask, Acta Met. 18 (5) 505–10 (1970).CrossRefGoogle Scholar
  29. 29.
    T. Sugita and J. A. Pask, J. Amer. Ceram. Soc. 53 (11) 609–13 (1970).CrossRefGoogle Scholar
  30. 30.
    P. E. Hart and J. A. Pask, J. Amer. Ceram. Soc., (in press). (UCRL-19699, July 1970).Google Scholar
  31. 31.
    N. V. Shishkov, P. P. Budnikov and P. L. Volodin; pp. 225–43 in New Nuclear Materials Including Nonmetallic Fuels, Vol. 1. International Atomic Energy Agency, Vienna, 1963.Google Scholar
  32. 32.
    T. G. Langdon and J. A. Pask, p. 283 this volume.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Terence G. Langdon
    • 1
  • Donald R. Cropper
    • 1
  • Joseph A. Pask
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations