Properties of Molten Ceramics

  • J. L. Bates
  • C. E. McNeilly
  • J. J. Rasmussen
Part of the Materials Science Research book series (MSR, volume 5)


The density, volume change on melting, melting pointy phase transitions, surface tension, viscosity, compressibility, and thermal diffusivity of molten ceramics have been measured up to 3000°C. The experimental techniques used to make these measurements are described. The properties for a number of oxide systems, e.g., Al2O3, Sm2O3, UO2, Cr2O3, and basalt, determined as a function of temperature are reviewed. The influences of decomposition and stoichiometry changes, vaporization loss, incompatibility with and choices of containment materials, at these extreme temperatures are considered.


Surface Tension Thermal Diffusivity Ultrasonic Velocity Refractory Metal Adiabatic Compressibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Janz, F. W. Dampier, G. R. Lakshminarauanan, P. K. Lorenz, and R. P. T. Tomkins, Molten Salts: Volume I, Electrical Conductance, Density and Viscosity Data, NSRDS-Nat. Bur. Stand. 15, (1968).Google Scholar
  2. 2.
    G. J. Janz, Molten Salts Handbook. Academic Press, New York, 1967.Google Scholar
  3. 3.
    J. O’M Bockris, J. L. White, and J. D. Mackenzie, Physicochemical Measurements at High Temperatures. Butterworths Scientific Publications, London, 1959.Google Scholar
  4. 4.
    J. N. Butler and B. H. Bloom, Surface Sci. 4 [1] (1966).Google Scholar
  5. 5.
    S. Bashforth and J. C. Adams, An Attempt to Test the Theory of Capillary Action. Cambridge University Press, London, 1883.Google Scholar
  6. 6.
    W. D. Kingery, J. Am. Ceram. Soc. 42 [1] 6–10 (1959).CrossRefGoogle Scholar
  7. 7.
    H. V. Wartenberg, G. Wehner, and E. Saran, Nachr. Ges. Wiss. Gottingen, Math-Physik, Klasse, (Fachgr. II) 2 65–71 (1936).Google Scholar
  8. 8.
    R. W. Bartlett and J. K. Hall, Am. Ceram. Soc. Bull. 44 [5] 444–448 (1965).Google Scholar
  9. 9.
    O. K. Sokolov, Izv. Akad. Nauk. SSSR Met. i. Gorn. Delà, 4 59–64 (1963).Google Scholar
  10. 10.
    H. V. Wartenberg, G. Wehner, and E. Saran, Nachr. Ges. Wiss. Gottingen, Math-Physik, Klasse, (Fachgr. II) 2 73–75 (1936).Google Scholar
  11. 11.
    A. D. Kirshenbaum and J. A. Cahill, J. Inorg. Nucl. Chem. 14 283–287 (1960).CrossRefGoogle Scholar
  12. 12.
    L. S. Priss, Zhur. Tekh. Fiz. 22 [6] 1051–1061 (1952).Google Scholar
  13. 13.
    P. Kozakevitch, Rev. Met. 57 149–60 (1960).Google Scholar
  14. 14.
    A. A. Hasapis, A. J. Melveger, M. C. Panish, L. Reif, and C. L. Rosen, The Vaporization and Physical Properties of Certain Refractories, Pt. II, Experimental Studies, (WADD-TR 60-463 Pt. II), p. 38 (July 1961).Google Scholar
  15. 15.
    O. D. Slagle and R. P. Nelson, J. Am. Ceram. Soc. 53 [11] 637–38 (1970).CrossRefGoogle Scholar
  16. 16.
    H. J. McSkimin, IRE Trans. Ultrasonics Eng., PGUE-5, 25 (1957).Google Scholar
  17. 17.
    W. J. Parker, R. J. Jenkins, R. J. Butler, and G. L. Abbott, J. Appi. Phys. 32 1679–1684 (1961).CrossRefGoogle Scholar
  18. 18.
    J. Lambert Bates, High Temperature Thermal Conductivity of Round Robin Uranium Dioxide, BNWL-1431 (1970).Google Scholar
  19. 19.
    G. N. Rupert, J. Rev. Sci. Inst. 36 1629 (1965).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • J. L. Bates
    • 1
  • C. E. McNeilly
    • 1
  • J. J. Rasmussen
    • 1
  1. 1.Battelle Memorial InstitutePacific Northwest LabsRichlandUSA

Personalised recommendations