Oxide Ceramics in Metal Cutting Applications

  • J. L. Pentecost
  • N. LevyJr.
  • Hayne PalmourIII
Part of the Materials Science Research book series (MSR, volume 5)


The chemical, mechanical, and thermal environment which exists at the cutting edge of an oxide tool in contact with a metal is summarized. Constitution and microstructure of the tool are related to its interactions with this dynamic environment. Performance tests, analyses, and scanning electron microscopic studies are presented, including examinations of wear mechanisms operative on tool surfaces.


Cast Iron Plastic Flow Wear Mechanism Tool Material Metal Cutting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Ryschkewitch, Ceramic cutting tool. U. S. Patent 2, 270, 607 (1942).Google Scholar
  2. 2.
    Watertown Arsenal Rept. No. RPL 23/2, Minutes of symposium on ceramic cutting tools, (1955).Google Scholar
  3. 3.
    W. M. Wheildon, Notes on the development and performance of ceramic cutting tools. Presented by J. K. Sjogren, at 58th Annual Meeting, Am. Ceram. Soc., 1956.Google Scholar
  4. 4.
    A. C. King and W. M. Wheildon, Ceramics in Machining Processes, Academic Press, Inc., New York, 1966.Google Scholar
  5. 5.
    R. P. Steijn, J. Appl. Phys. 32, 1951–1958 (1961).CrossRefGoogle Scholar
  6. 6.
    E. J. Duwell, J. Appl. Phys. 33, 2691–2698 (1962).CrossRefGoogle Scholar
  7. 7.
    P. F. Becher, p, 315,this volume.Google Scholar
  8. 8.
    E. J. Krabacher and W. A. Haggerty, Performance characteristics of ceramic tools in turning and milling. ASTE Tech. Paper 145, Book 2 (1958).Google Scholar
  9. 9.
    The Carborundum Company. Ceramic cutting tool design and application data.Google Scholar
  10. 10.
    Greenleaf Corporation. Cutting tool calculation slide rule.Google Scholar
  11. 11.
    H. D. Moore and D. R. Kibbey, Development of accelerated testing procedures for ceramic cutting tools. Ohio State University, Eng. Expt. Sta. Report 169 (1962).Google Scholar
  12. 12.
    L. S. Williams, pp. 245–302 in Mechanical Properties of Engineering Ceramics, W. W. Kriegel and H. Palmour, III, Eds., Interscience Publishers, Inc., New York, 1961.Google Scholar
  13. 13.
    E. B. Shand, Am. Ceram. Soc. Bull. 38, 653–660 (1959).Google Scholar
  14. 14.
    H. J. Siekmann and L. A. Sowinski, Am. Machinist pp. 113–122 (1957).Google Scholar
  15. 15.
    B. J. Hockey, Am. Ceram. Soc. Bull. 49 (4) 498 (1970).Google Scholar
  16. 16.
    A. H. Heuer, R. F. Firestone, J. D. Snow, and J. Tullis, p 331, this volume.Google Scholar
  17. 17.
    N. J. Petch, p. 185, this volume.Google Scholar
  18. 18.
    R. W. Rice, p. 195, this volume.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • J. L. Pentecost
    • 1
  • N. LevyJr.
    • 1
  • Hayne PalmourIII
    • 2
  1. 1.W. R. Grace and CompanyClarksvilleUSA
  2. 2.North Carolina State UniversityRaleighUSA

Personalised recommendations