Advertisement

The Compressive Strength of Ceramics

  • R. W. Rice
Part of the Materials Science Research book series (MSR, volume 5)

Abstract

The literature on compressive strengths of crystalline ceramics, especially at room temperature, suggests that microplasticity may be the mechanism of much compressive failure since (2) the yield stress (microhardness/3) is the upper limit of both ambient and elevated temperature compressive strengths and (2) data on grain size dependence are consistent with the Fetch equation. A failure theory is developed which is in accord with (1) experimentally observed variations in microhardness and compressive strength data, (2) stress concentrations due to thermal and mechanical anisotropies, impurities, pores and flaws, and (3) twin-induced premature fracture. Applicability of the theory is evaluated for crystalline ceramics in terms of conventional flaw theories, and relevance for non-crystalline ceramics is discussed.

Keywords

Compressive Strength Slip System Rock Salt Compressive Behavior Compressive Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rudnick, C. W. Marschall, W. H. Duckworth, and B. R. Emrich, “The Evaluation and Interpretation of Mechanical Properties of Brittle Materials”, Defense Ceramic Information Center Report DCIC 68 - 3, 1968.Google Scholar
  2. 2.
    R. W. Davidge and R. W. Whitworth, Phil. Mag. 62, 217–224 (1964).Google Scholar
  3. 3.
    J. S. Dryden, S. Morimoto, and J. S. Cook, Phil. Mag. 12 [116] 379–91 (1965).CrossRefGoogle Scholar
  4. 4.
    R. I. Garbe, I, I. Soleshenko, and 0. A. Khaldie, Soviet Phy.-Solid State 7 [9] 2147–52 (1966).Google Scholar
  5. 5.
    A. S. Keh, J. Appl. Phys. 31 [9] 1538 - 45 (1960).CrossRefGoogle Scholar
  6. 6.
    A. A. Urusovskaya and V. G. Govorkov, Soviet Phy-Solid State 10 [4] 437–441 (1967).Google Scholar
  7. 7.
    D. J. Barber, J. Appl. Phys. 36 [10] 3342–49 (1965).CrossRefGoogle Scholar
  8. 8.
    R. M. Katz and R. L. Coble, J. Appl. Phys. 41 [4] 1871–73 (1970).CrossRefGoogle Scholar
  9. 9.
    T. S. Liu and C. H. Li, J. Appl. Phys. 35 [11] 3325–30 (1964).CrossRefGoogle Scholar
  10. 10.
    P. G. Riewald and L. H. vanVlack, J. Am. Ceram. Soc. 53 [4] 219 (1970).CrossRefGoogle Scholar
  11. 11.
    F. W. Vahldiek, S. A. Mersol, C. T. Lynch, Science 149 748 (13 Aug. 1965 ).Google Scholar
  12. 12.
    D. J. Rowcliffe and W. J. Warren, J. Mat. Sci. 5 345 (1970).CrossRefGoogle Scholar
  13. 13.
    G. G. Bentle, F. E. Ekstrom, and R. Chang, “Plastic Deformation of Uranium Carbide Crystals”, Atomics International Report NAA-SR-8108, 1963.Google Scholar
  14. 14.
    S. B. Luyckx, Acta Met. 18 233 (1970).CrossRefGoogle Scholar
  15. 15.
    T. Takahashi and E. J. Freise, Phil. Mag. 12 1 (1965).Google Scholar
  16. 16.
    L. Pons, p. 393 in Anisotropy in Single Crystal Refractory Compounds, Vol. 2 Ed. by F. Vahldiek and S. Mersol. Plenum Press, New York, 1968.Google Scholar
  17. 17.
    H. Palmour III; pp.320 in Mechanical Properties of Engineering Ceramics, Ed. by W. Kriegel and H. Palmour Ixl. Interscience, New York, 1961.Google Scholar
  18. 18.
    B. J. Hockey, Am. Ceram. Soc. Bull. 48 [4] 393 (1969).Google Scholar
  19. 19.
    G. F. Hurley, Met. Trans. 1, 2029 (1970).CrossRefGoogle Scholar
  20. 20.
    R. R. Vandervoort and W. L. Barmore, J. Appl. Phys. 37 [12] 4483 (1966).CrossRefGoogle Scholar
  21. 21.
    G. G. Bentle and K. J. Miller, J. Appl. Phys. 38 [11] 4248 (1967).CrossRefGoogle Scholar
  22. 22.
    W. F. Brace, Bull. Geol. Soc. Am. 69 [12-2] 1539 (1958).Google Scholar
  23. 23.
    O. W. Johnson, J. Appl. Phys. 37 [7] 2521 (1966).CrossRefGoogle Scholar
  24. 24.
    J. L. Daniel and S. Takahashi, “Fracture of Uranium Dioxide”, Proc. 1st Mat. Conf. on Fracture V3, 1967, Japanese Soc. for Strength and Fracture of Materials, 1966.Google Scholar
  25. 25.
    W. S. Rothwell, J. Am. Ceram. Soc. 47 [8] 409 (1964).CrossRefGoogle Scholar
  26. 26.
    E. Votava, S. Amelinckx, and W. Dekeyser, Acta Met. 389 (1955).Google Scholar
  27. 27.
    R. W. Sauer and E. J. Freise; p. 459 in Anisotropy in Single-Crystal Refractory Compounds, Vol. 2 Ed. by F. Vahldiek and S. Mersol. Plenum Press, New York, 1966.Google Scholar
  28. 28.
    S. A. Mersol, F. W. Vahldiek, and C. T. Lynch, Trans. Met. Soc. AIME, 233 1658 (1965).Google Scholar
  29. 29.
    C. O. Hülse, S. M. Copley, and J. A. Pask, J. Am. Ceram. Soc. 46 [7] 317–23 (1963).CrossRefGoogle Scholar
  30. 30.
    D. W. Budworth and J. A. Pask, J. Am. Ceram. Soc. 46 [11] 560–61 (1963).CrossRefGoogle Scholar
  31. 31.
    J. H. Westbrook, “Flow in Rock Salt Structures”, General Electric Research Laboratory Report No. 58-RL-2033, 1958.Google Scholar
  32. 32.
    R. W. Rice, “Strength-Grain Size Effects in Ceramics”, presented at the British Ceramic Society Conference on “Textural Studies of Ceramics”, London, Dec., 1970. Proceedings to be published.Google Scholar
  33. 33.
    A. H. Heuer and J. P. Roberts, Proc. Brit. Ceram. Soc. No. 6 17–27 (1966).Google Scholar
  34. 34.
    R. A. Alliegro, pp. 1125 - 30 in The Encyclopedia of Electrochemistry Ed. by C. A. Hampel. Reinhold Pub. Co., 1964.Google Scholar
  35. 35.
    G. R. Finlay, Chem. in Canada, 41–43 (Mar. 1952).Google Scholar
  36. 36.
    P. T. B. Shaffer, High-Temperature Materials. Plenum Press, New York, 1964.Google Scholar
  37. 37.
    W. S. Williams and R. D. Schaal, J. Appl. Phys. 33 [3] 955–62 (1962).CrossRefGoogle Scholar
  38. 38.
    E. Ryschkewitsch, “Properties and Physical Constants Data of High Refractory Materials”, Air Force Technical Report No. 6330, ( Aug. 1950.Google Scholar
  39. 39.
    K. M. Taylor and Camille Lenie, J. Electrochem. Soc. 107 [4] 308–14 (1960).CrossRefGoogle Scholar
  40. 40.
    J. V. E. Hansen, The Norton Co., Private communication, 1970.Google Scholar
  41. 41.
    Anonymous, Materials Engineering, 22 (June 1967).Google Scholar
  42. 42.
    J. Elston and C. Labbe, J. Nuc. Mat. 4 [2] 143–64 (1961).CrossRefGoogle Scholar
  43. 43.
    D. M. Chay, J. Palmour III, and W. W. Kriegel, J. Am. Ceram. Soc. 51 [1] 10–16 (1968).CrossRefGoogle Scholar
  44. 44.
    J. Handin, p. 223–89 in Handbook of Physical Constants. Ed by S. Clark, Jr. Geological Soc. Am. Memoir 97, New York, 1966.Google Scholar
  45. 45.
    C. E. Curtis and J. R. Johnson, J. Am. Ceram. Soc. 40 [2] 63–68 (1957).CrossRefGoogle Scholar
  46. 46.
    M. D. Burdick and H. S. Parker, J. Am. Ceram. Soc. 39 [5] 181–87 (1956).CrossRefGoogle Scholar
  47. 47.
    H. T. Hall, Science 169, 868 - 69 (Aug. 1970).CrossRefGoogle Scholar
  48. 48.
    W. G. Bradshaw, Lockheed Palo Alto Research Laboratory, private communication, 1970.Google Scholar
  49. 49.
    R. W. Rice, “Comparison of Knoop and Vickers Microhardness”, to be published.Google Scholar
  50. 50.
    P. J. Soltis, “Anisotropic Mechanical Behavior in Sapphire (AI2O3) Whiskers”, Naval Air Engineering Center, Aeronautical Material Lab. Rpt. No. NAE-AML-1831, April 1964.Google Scholar
  51. 51.
    P. D. Bayer and R. E. Cooper, J. Mat. Sci. 2 347–53 (1967).CrossRefGoogle Scholar
  52. 52.
    F. P. Mallinder and B. A. Proctor, Phil. Mag. 13 [121] 197–207 (Jan. 1966).CrossRefGoogle Scholar
  53. 53.
    F. P. Mallinder and B. A. Proctor, Proc. Brit. Ceram. Soc. No. 6, 9–16 (1966).Google Scholar
  54. 54.
    G. F. Hurley, “Progress Report for the VIII Refractory Commposites Working Group”, Tyco Lab. Inc., Waltham, Mass., 1970.Google Scholar
  55. 55.
    L. Mordfin and M. J. Kerper; pp. 243-61 in Mechanical and Thermal Properties of Ceramics. Ed. by J. B. Wachtman, Jr. U. S. Natl. Bur. of Stds., Special Pub. 303 May 1969.Google Scholar
  56. 56.
    J. D. Jenkins, pp.102–103 in Mechanical Properties of Non-Metallic Brittle Materials. Ed. by W. Walton. Interscience Pubi., London, 1958.Google Scholar
  57. 57.
    W. F. Brace, in Proceedings of a Conference on the State of Stress in the Earth’s Crust, 1963. See also J. C. Jaeger, p. 268-283 in Fracture 1st. Tewksbury Symposium, C. J. Osbom, Ed., Univ. of Melbourne, 1965.Google Scholar
  58. 58.
    J. H. Westbrook and P. J. Jorgensen, Am. Minerol. 53 1899–1909 (1968).Google Scholar
  59. 59.
    R. W. Rice, “Machining and Surface Workhardening of MgO”, submitted for publication.Google Scholar
  60. 60.
    B. J. Hockey, “Observations of Plastic Deformation in Alumina due to Mechanical Abrasion”, Presented at the 72nd Annual Meeting of the Am. Ceram. Soc. [Abstr. Am. Ceram. Soc. Bull. 49 (4) 498 (1970)].Google Scholar
  61. 61.
    W. F. Brace, J. Geophy. Res. 65 [6] 1773–88 (1960).CrossRefGoogle Scholar
  62. 62.
    F. Lendvay and M. V. Fock, J. Mat. Sci. [4] 747–52 (1969).Google Scholar
  63. 63.
    D. R. Tate, Trans. ASM 35 374 (1945).Google Scholar
  64. 64.
    L. P. Tarasov and N. W. Thibault, Trans. ASM 38 331 (1947).Google Scholar
  65. 65.
    B. O. Haglund, Prakt. Metallog. 7, 173–82 (April 1970).Google Scholar
  66. 66.
    C. F. Cline and J. S. Kahn, J. Electrochem. Soc. 110 [7] 773–75 (1963).CrossRefGoogle Scholar
  67. 67.
    F. Robertson, Geolog. Soc. Am. Bull. 72 621–37 (1961).CrossRefGoogle Scholar
  68. 68.
    Pyrolytic Graphite Engineering Handbook, General Electric Co. Schenectady, N. Y., 1963.Google Scholar
  69. 69.
    W. C. Riley, pp. 14 - 75 in Ceramics for Advanced Technologies. Ed. by J. E. Hove and W. C. Riley. John Wiley & Sons, Inc., New York, 1965.Google Scholar
  70. 70.
    R. W. Rice, “The Effect of Porosity on the Mechanical Properties of Ceramics”, to be published.Google Scholar
  71. 71.
    M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals; pp. 167–176. Consultants Bureau, New York. 1964.Google Scholar
  72. 72.
    A. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials; p. 159. John Wiley & Sons, New York, 1967.Google Scholar
  73. 73.
    D. Kalish, E. V. Clougherty, J. Ryan, “Fabrication of Dense Fine Grain Ceramic Materials”, Final report for Contract DA-19-066-AMC-283(X), 1966.Google Scholar
  74. 74.
    T. D. Gulden, J. Am. Ceram. Soc. 52 [11] 585 (1969).CrossRefGoogle Scholar
  75. 75.
    R. W. Bartlett and G. W. Martin, J. Appl. Phys. 39 [5] 2324 (Apr. 1969).CrossRefGoogle Scholar
  76. 76.
    J. Corteville, Compt. Rend. 260 [7] 4477–80 (Apr. 1965).Google Scholar
  77. 77.
    T. Simecek, “Twinning of CdTe Crystals”, Ceskoslov casopisfys 10 180-1 (1960). [Chemical Abs. 54:23573h)].Google Scholar
  78. 78.
    A. G. Fitzgerald and G. Thomas, Phy. Stat. Sol. 25 263 (1968).CrossRefGoogle Scholar
  79. 79.
    K.- D. Lyall and M. S. Paterson Acta Met. 14 371–83 (Mar. 1966).Google Scholar
  80. 80.
    E. Stofel and H. Conrad, Trans. Met. Soc. AIME 227 1053 (1963).Google Scholar
  81. 81.
    P. W. Bridgman,Studies in Large Plastic Flow and Fracture; p. 120 McGraw-Hill, New York, 1952.Google Scholar
  82. 82.
    M. L. Kronberg, p. 329 in Mechanical Properties of Engineering Ceramic. Ed. by W. W. Kriegel and H. Palmour III. Inter- science Pub., New York, 1961.Google Scholar
  83. 83.
    D. Griggs, Am. Min. 23 28–33 (1938).Google Scholar
  84. 84.
    D. W. Budworth and J. A. Pask, Trans. Brit. Ceram. Soc. 62 763 (1963).Google Scholar
  85. 85.
    C. O. Hülse, “Mechanical Properties of CaO Single Crystals”, to be publsihed.Google Scholar
  86. 86.
    A. G. Evans, C. Roy and P. L. Pratt, Proc. Brit. Ceram. Soc. No. 6 173–188 (1966).Google Scholar
  87. 87.
    D. W. Lee and J. S. Haggerty, J. Am. Ceram. Soc. 52 [12] 641–47 (1969).CrossRefGoogle Scholar
  88. 88.
    D. K. Smith, Jr. and S. Weissman, J. Am. Ceram. Soc. 51 [6] 33–36 (1968).Google Scholar
  89. 89.
    D. H. Chung and W. R. Buessoti, pp. 217–45 in Anisotropy in Single-Crystal Refractory Compounds, Vol. 2. Edby F. Vahldiek and S. Mersol. Plenum Press, New York, 1968.Google Scholar
  90. 90.
    D. P. H. Hasselman, p. 247-65, ibid.Google Scholar
  91. 91.
    H. P. Kirchner and R. M. Gruver, J. Am. Ceram. Soc. 53 [5] 232–36 (1970).CrossRefGoogle Scholar
  92. 92.
    D. M. Marsh, “Plastic Flow in Glass”, Proc. Roy. Soc. (London) 279-A [1378] 420–35 (1964).Google Scholar
  93. 93.
    D. M. Marsh, pp. 143–55 in Fracture of Solids. Ed. by D. C. Drucker and J. J. Gilman. Interscience Publishers, New York, 1963.Google Scholar
  94. 94.
    E. Ryschkewitsch, Ber. Deutsch. Keram. Gesel 22 [2] 54–65 (1941).Google Scholar
  95. 95.
    E. Ryschkewitsh, J. Am. Ceram. Soc. 36 [2] 65–68 (1953).CrossRefGoogle Scholar
  96. 96.
    N. Igata-, R. R. Hasiguti, and K. Domotot pp.883–98 in Proc. 1st Int. Conf. on Fracture, Vol. 2, Japanese Society for Strength and Fracture of Materials, 1966.Google Scholar
  97. 97.
    F. P. Knudsen, J. Am. Ceram. Soc. 42 [8] 376–390 (1959).CrossRefGoogle Scholar
  98. 98.
    F. P. Knudsen, H. S. Parker, M. O. Burdick, J. Am. Ceram. Soc. 43 [12] 641–47 (1960).CrossRefGoogle Scholar
  99. 99.
    V. Mandorf and J. Hartwig; pp. 455 - 66 in High Temperature Materials II. Ed. by G. Ault, W. Varclay, and H. Munger, Interscience Publishers, New York, 1963.Google Scholar
  100. 100.
    H. E. Exner and J. Gurland, Pwd. Met. 13 [75] 13–31 (1970).Google Scholar
  101. 101.
    D. I. Matkin and J. E. Caffyn, Trans. Brit. Ceram. Soc. 62 753–61 (1963).Google Scholar
  102. 102.
    N. S. Stoloff and T. L. Johnston, “Formation and Structure of Alloy Layers in the MgO-Mn Systems” presented at the 66th Annual American Ceramic Society meeting, April 1964 [Abstr., Am. Ceram. Soc. Bui. 43 [3] 339 (1964)].Google Scholar
  103. 103.
    G. W. Groves and M. E. Fine, J. Appl. Phys. 35 [12], 3587–93 (1964).CrossRefGoogle Scholar
  104. 104.
    R. W. Rice, J. G. Hunt, G. I. Friedman and J. L. Sliney, “Identifying Optimum Parameters of Hot Extrusions”, Final report for NASA Contract NAS7-276, Aug. 1968.Google Scholar
  105. 105.
    E. Camall, Eastman Kodak Company, private communication, 1970.Google Scholar
  106. 106.
    D. A. Buckner, H. C. Hafner, and N. J. Kreidl, J. Am. Ceram. Soc. 45 [9] 435–38 (1962).CrossRefGoogle Scholar
  107. 107.
    M. Tashiro, “Chemical composition of glass - ceramics, part two” The Glass Ind. p. 428, Aug. 1966.Google Scholar
  108. 108.
    W. F. Brace, Penn. State Univ. Mineral Expt. Sta. Bui. 76 99–103 (1961).Google Scholar
  109. 109.
    I. Soroka and P. J. Sereda, J. Am. Ceram. Soc. 51 [6] 337–41 (1968).CrossRefGoogle Scholar
  110. 110.
    E. Hoek and Z. T. Bieniawski,Intl. J. Fract. Mechan. 1 [3] 137–55 (Sept. 1965).Google Scholar
  111. 111.
    J. S. Rinehart, “Fracture of Rocks”,Intl. J. Fract. Mechan. 2 [3] 534–51 (Sept. 1966).Google Scholar
  112. 112.
    R. J. Stokes5 pp. 379 - 405 in Ceramic Microstructures, Their Analysis, Significance and Production. Ed. by R. Fulrath and J. Pask. John Wiley & Sons, New York, 1968.Google Scholar
  113. 113.
    R. B. Day and R. J. Stokes; pp.355-86 in Materials Science Research, Vol. 3. Edby W. W. Kriegel and H. Palmour III. Plenum Press, New York, 1966.Google Scholar
  114. 114.
    R. J. Stokes and C. H. Li;pp. 133-57 in Materials Science Research, Vol. 1. Edby H. Stadelmaier and W. Austin. Plenum Press, New York, 1963.Google Scholar
  115. 115.
    A. R. C. Westwood, Phil. Mag. 6 [62] 195–200 (Feb. 1961).CrossRefGoogle Scholar
  116. 116.
    T. L. Johnston, R. J. Stokes, and C. H. Li, Phil. Mag. 7 [73] 23–34 (Jan. 1962).CrossRefGoogle Scholar
  117. 117.
    T. Auten, Case Western Reserve U., private communication, 1970.Google Scholar
  118. 118.
    M. S. Paterson and C. W. Weaver, J. Am. Ceram. Soc. 53 [8] 463–71 (1970).CrossRefGoogle Scholar
  119. 119.
    A. G. Evans, C. Roy, P. L. Pratt, Proc. Brit. Ceram. Soc. 6, 173 (June 1966).Google Scholar
  120. 120.
    J. J. Oilman, J. Appl. Phys. 41 [4] 1664 - 66 (1970).CrossRefGoogle Scholar
  121. 121.
    C. W. Weaver and M. S. Paterson, J. Am. Ceram. Soc. 52 [6] 293 - 302 (1969).CrossRefGoogle Scholar
  122. 122.
    A. S. Wronski and A. C. Chilton, Scripta Metall. 3 394 - 400 (1969).CrossRefGoogle Scholar
  123. 123.
    D. Francois and T. R. Wilshaw, J. Appl. Phys. 39 [9] 4170 - 77 (1968).CrossRefGoogle Scholar
  124. 124.
    A. G. Atkins and D. Tabor, J. Inst. Metals 94 107 - 115 (1966).Google Scholar
  125. 125.
    A. G. Atkins, A. Silverio, and D. Tabor, J. Inst. Metals 94, 369 - 78 (1966).Google Scholar
  126. 126.
    A. G. Atkins and D. Tabor, Proc. Roy. Soc. (London) A292, 441 - 459 (1966).CrossRefGoogle Scholar
  127. 127.
    A. G. Atkins and D. Tabor, J. Am. Ceram. Soc. 50 [4] 195 - 98 (1967).CrossRefGoogle Scholar
  128. 128.
    R. D. Koester and D. P. Moak, J. Am. Ceram. Soc. 50 [6] 290 - 96 (1967).CrossRefGoogle Scholar
  129. 129.
    H. Palmour, III, “Flow and Fracture in Spinel Structured Ceramics”, Final Report, Contract DA31-124-ARD-D-207, Jan. 1970.Google Scholar
  130. 130.
    J. H. Westbrook, Rev. Hautes Temper. Refract. 3 47–57, (1966).Google Scholar
  131. 131.
    P. R. V. Evans, “Effect of Microstructure”; pp.164-202 in Studies of The Brittle Behavior of Ceramic Materials, Ed. by N. A. Weil, Report ASD-TR-61-628, Part II, Contract AF 33(6l6)-7465, April 1963.Google Scholar
  132. 132.
    R. R. Matheson, Ceramic Age, p. 54–58, June 1963.Google Scholar
  133. 133.
    R. J. Charles, “Static Fatigue; Delayed Fracture”, p. 468–519 in Ref. 131.Google Scholar
  134. 134.
    R.Rice, “Tensile Strength and Fracture of AI2O3,” to be published.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • R. W. Rice
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations