Advertisement

Functional Interrelationships of Principal Catecholaminergic Centers in the Brain

  • N. P. Bechtereva
  • D. K. Kambarova
  • V. K. Pozdeev

Abstract

The central nervous system is truly remarkable in its ability to maintain stable normal function amidst myriad environmental factors which tend to disrupt its equilibrium. It maintains its functional balance by means of adaptive mechanisms. During the normal course of existence external forces act on the organism, altering its internal environment so that important elements fall outside their range of optimal functioning. Exceeding the optimal range activates specialized adaptive mechanisms which tend to restore the internal environment to the optimal state. Thus, the initial change acts as a stimulus to processes which tend to reverse that change. This regulatory pattern of action and reaction is ineffective only when the initial change is so extreme as to be irreversible or when the mechanisms to counter the initial change are either weakened or absent.

Keywords

Firing Rate Caudate Nucleus Globus Pallidus Parkinsonian Patient Contralateral Limb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, G. B., Beeson, M. F., Bradley, P. B., 1969, The effects of stressful, stimuli and drugs of the concentrations and turnover rates of monoamine in rat brain, in: The Present Status of Psychotropic Drugs, pp. 299–301, Proc. CINP VI Intern. Congr. ( Tarragone, 1968 ).Google Scholar
  2. Barbeau, A., Murphy, C. F. and Sourkes, T. L., 1961, Excretion of dopamine in diseases of basal ganglia. Science 133: 1706.PubMedCrossRefGoogle Scholar
  3. Barbeau, A., Tétreault, L., Oliva, L., Morazain, L., and Gardin, L., 1966, Pharmacology of akinesia. Investigations on 3,4-dimethoxy-phenylethylamine, Nature (London) 209: 719.CrossRefGoogle Scholar
  4. Bechtereva, N. P., 1971, The Neurophysiological Base of the Mental Activity in Man,Leningrad.Google Scholar
  5. Bechtereva, N. P., Grigorovitch, K. A., and Zontov, V. V., 1963, On the pathogenesis and the therapy of the Raynaud disease, Zh. Nevropatol. i Psikhiatr. 5: 641.Google Scholar
  6. Bechtereva, N. P., Bondartchuk, A. N., and Zontov, V. V., 1965, The Raynaud’s Disease,Leningrad.Google Scholar
  7. Bechtereva, N. P., Bondartchuk, A. N., and Smirnov, V. M., Trochatchev A. I., 1967, The Physiology and the Pathophysiology of the Deep Brain Structures in Man,Leningrad-Moskva.Google Scholar
  8. Bechtereva, N. P., Kambarova, D. K., and Matveev, Yu.K., 1970, The functional characteristic of the links of the cerebral control systems for mental and motor functions in man, Fiziol. Zh. SSSR 56: 1081.Google Scholar
  9. Bertler, A., 1964, Dopamine in the central nervous system, in: Biochemical and Neurophysiological Correlations of Centrally Acting Drugs ( E. Trabucchi, R. Paoletti, and N. Canal. eds.), pp. 51–55, Pergamon Press, New York.Google Scholar
  10. Carlsson, A., 1959, The occurrence, distribution and physiological role of catecholamines in the nervous system, Pharmacol. Rev. 11: 490.PubMedGoogle Scholar
  11. Carlsson, A., 1972, Biochemical and pharmacological aspects of parkinsonism, Acta Neurologica Scand. 48: 11.CrossRefGoogle Scholar
  12. Connor, J. D., 1970, Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine, J. Physiol. 208 (3): 323.Google Scholar
  13. Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamin (3Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wochschr. 38: 1236.CrossRefGoogle Scholar
  14. Everett, G. M., Borcherding, J. W., 1970, L-dopa: effect on concentrations of dopamine, nor-epinephrine, and serotonin in brains of mice, Science 168: 84QCrossRefGoogle Scholar
  15. Fanchaps, A., Daepfner, N., Weidmann, H., and Cerletti, A., 1960, Pharmakologische Charakterizierung von Deseril, einem Serotonin-Antagonisten, Schweiz. Med. Wochschr. 90: 1040.Google Scholar
  16. Feltz, P., 1970, Relation nigrostriatale: essai de différenciation des excitatins et inhibitions par micro-iontophorèse de dopamine, J. Physiol. Suppl. 62 (1): 151.Google Scholar
  17. Freedman, D. X., 1961, Effect of LSD-25 on brain serotonin, J. Pharmacol. Exptl. Therap. 134: 160.Google Scholar
  18. Friedhoff, A. J., Hekimian, L., Alpert, M., and Tobach, E., 1963, DIhydroxyphenylalanine in extrapyramidial diseases, J. Am. Med. Assoc. 184: 285.CrossRefGoogle Scholar
  19. Friedhoff, A. J., Hekimian, L., Alpert, M., and Tobach, E., 1963, DIhydroxyphenylalanine in extrapyramidial diseases, J. Am. Med. Assoc. 184: 285.CrossRefGoogle Scholar
  20. Friedhoff, A. J., Hekimian, L., Alpert, M., and Tobach, E., 1963, DIhydroxyphenylalanine in extrapyramidial diseases, J. Am. Med. Assoc. 184: 285.CrossRefGoogle Scholar
  21. Granerus, Ann-Katherine, Jagenburg, Rudolf, Stig, Rödjer and Alvar, Svanborg, 1971, Inhibition of L-phenylalanine absorption by L-dopa in patients with parkinsonism, Proc. Soc. Exptl. Biol. Med. 137, 3: 942.Google Scholar
  22. Hornykiewicz, 0., 1964, The role of dopamine (3-hydroxytyramine) in parkinsonism, in: Biochemical and Neurophysiological Correlations of Centrally Acting Drugs, ( E. Trabucchi, R. Paoletti and N. Canal, eds.), pp. 57–68, Pergamon Press, New York.Google Scholar
  23. Hornykiewicz, 0., 1966, Dopamine (3-hydroxytyramine) and brain function, Pharmacol. Rev. 18: 925.Google Scholar
  24. Hull, C. D., Bernardi, G., and Buchwald, N. A., 1970, Intracellular responses of caudate neurons to brain stem stimulation, Brain Res. 22: 163.PubMedCrossRefGoogle Scholar
  25. Iliukhina, V. A., 1972, The slow electrical processes in the human brain during mental and motor activity (with regard to the conditions of the central biochemical mediation), A vtoref. Kand. Diss., Leningrad.Google Scholar
  26. Kambarova, D. K., 1967, The central mechanisms of the paroxysmal diseases of non-epileptic kind. Avtoref. Kand. Diss., Leningrad.Google Scholar
  27. Kaminsky, L. S., 1959, Processing of the Clinical and Laboratory Data,Moskva. Kaminsky, L. S., 1964, Statistical Processing of the Clinical and Laboratory Data,Moskva.Google Scholar
  28. Kostowski, W., and Giacalone, E., 1969, Stimulation of various forebrain structures and brain 5HT, 5HIAA and behaviour in rats, in: The Present Status of Psychotropic Drugs, pp. 289–291 Proc. CINP. VI. Intern. Cong. ( Tarragone, 1968 ).Google Scholar
  29. Kostowski, W., and Giacalone, E., 1969, Stimulation of various forebrain structures and brain 5HT, 5HIAA and behaviour in rats, in: The Present Status of Psychotropic Drugs, pp. 289–291 Proc. CINP. VI. Intern. Cong. ( Tarragone, 1968 ).Google Scholar
  30. Matlina, E. Sh., and Menshikov, V. V., 1967, The Clinical Biochemistry of the Catecholamines, pp. 113–127, Moskva.Google Scholar
  31. Misyuk, N. S., Prigun, P. P., Korenevskaia, A. A., and Misyuk, E. M., 1965, The Data on the Serotonin Metabolism Under Inhibitory Condition of Brain, Minsk.Google Scholar
  32. Smirnov, V. M., 1967, In: The Localization Problems in Psychoneurology, Vol. X, pp. 22–48, ( Tr. in-st im. Bechtereva ), Leningrad.Google Scholar
  33. Udenfriend, S., Titus, E., and Weissbach, H., 1955, The identification of 5-hydroxy-3-indoleacetic acid in normal urine and a method for its assay, J. Biol. Chem. 216: 499.PubMedGoogle Scholar
  34. Verzeano, M., 1972, Pacemakers, synchronization and epilepsy, in: Synchronization of EEG Activity in Epilepsies ( H. Petsche and M. A. B. Brazier, eds.), pp. 155–188, Springer-Verlag, Wien, New York.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • N. P. Bechtereva
    • 1
  • D. K. Kambarova
    • 1
  • V. K. Pozdeev
    • 1
  1. 1.Institute of Experimental MedicineLeningradUSSR

Personalised recommendations