Raman Spectroscopy of High Pressure Phases of Solids

  • Malcolm Nicol
  • Jane R. Kessler
  • Yukiko Ebisuzaki
  • William D. Ellenson
  • Mei Fong
  • C. Sherman Gratch
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 10)


This report concerns one role of Raman spectroscopy for observing the behavior of solids under high pressures—that is, Raman spectroscopy is an experimental technique for characterizing in situ phases of solids that occur only at high pressures. This task has several aspects, three of which receive part cular attention in the work described here. These are:
  1. a.

    the detection of phase transformations in solids under pressure including determination of phase boundaries and other characteristics of the transition;

  2. b.

    assignment of the Raman spectrum in terms of plausible structures and other properties of the high-pressure phases; and

  3. c.

    interpretation of pressure dependences of vibrational spectra in terms of interatomic interaction; that may explain the occurrence of known transitions, with the goal of generalizing the analysis to describe properties of related materials under conditions that may not be accessible for experimentation.



Raman Spectrum Pressure Dependence High Pressure Phase Primitive Cell Fluorite Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, S.P.S. Porto “Light Scattering with Laser Sources”, in G.B. Wright, ed., Light Scattering Spectra of Solids (Springer-Verlag, New York, 1969), p.l.Google Scholar
  2. 2.
    J.F. Asell and M. Nicol, J. Chem. Phys. 49, 5395 (1968).CrossRefGoogle Scholar
  3. 3.
    M. Nicol, Y. Ebisuzaki, W.D. Ellenson, and A. Karim, Rev. Sci. Instr. (to be published).Google Scholar
  4. 4.
    R.A. Fitch, T.E. Slykhouse and H.G. Drickamer, J. Opt. Soc. Amer. 47, 1015 (1957).CrossRefGoogle Scholar
  5. 5.
    S.S. Mitra (unpublished data) cited by J.R. Ferraro, H. Horan and A. Quattrochi, J. Chem. Phys. 55, 664 (1971).CrossRefGoogle Scholar
  6. 6.
    C. Wong and D.E. Schulele, J. Phys. Chem. Solids 28, 1225 (1967).CrossRefGoogle Scholar
  7. 7.
    J.D. Axe, Phys. Rev. 139, Al215 (1965).CrossRefGoogle Scholar
  8. 8.
    J.P. Hurrell and V.J. Minkiewicz, Sol. State. Comm. 8, 463 (1970).CrossRefGoogle Scholar
  9. 9.
    D.P. Dandekar and J.C. Jamieson, Trans. Amer. Cr7st. Assn. 5, 19 (1969).Google Scholar
  10. 10.
    E.B. Brackett, T.E. Brackett and R.L. Suss, J. Phys. Chem. 67, 2132 (1963).CrossRefGoogle Scholar
  11. 11.
    C. Wong and D.E. Schuele, J. Phys. Chem. Solids 29, 1309 (1968).CrossRefGoogle Scholar
  12. 12.
    G.A. Ozín, Can. J. Chem. 48, 2931 (1970).CrossRefGoogle Scholar
  13. 13.
    S.P.S. Porto, P. Fleury, and T.C. Damen, Phys. Rev. 154, 522 (1967).CrossRefGoogle Scholar
  14. 14.
    M. Nicol and M.Y. Fong, J. Chem. Phys. 54, 3167 (1971).CrossRefGoogle Scholar
  15. 15.
    L. Nagel and M. O’Keeffe, Mat. Res. Bull. (to be published).Google Scholar
  16. 16.
    P.W. Bridgman, Am. J. Sci. 237, 7 (1939).CrossRefGoogle Scholar
  17. 17.
    M.Y. Fong and M. Nicol, J. Chem. Phys. 54, 579 (1971).CrossRefGoogle Scholar
  18. 18.
    M. Nicol and W.D. Ellenson, J. Chem. Phys. 56, 000 (1972).CrossRefGoogle Scholar
  19. 19.
    J.C. Jamieson, J. Geol. 65, 334 (1957).CrossRefGoogle Scholar
  20. 20.
    R.N. Schock and S. Katz, Amer. Mineral. 3, 1910 (1963).Google Scholar
  21. 21.
    C.E. Weir, E.R. Lippencott, A. Van Valkeiburg and E.N. Bunting, J. Res. Natl. Bur. Stds. 63A, 55 (1959)Google Scholar
  22. 22.
    D. Cifrulak, Amer. Mineral. 55, 815 (1970).Google Scholar
  23. 23.
    See, for example, C.W. Garland and J.S. Jones, J. Chem. Phys. 41, 1165 (1964) and references therein.Google Scholar
  24. 24.
    E.R. Cowley, Phys. Rev. B3, 2743 (1971).CrossRefGoogle Scholar
  25. 25.
    H.S. Gutowsky, G.E. Pake, and R. Bersohr, J. Chem. Phys. 22, 643 (1954).CrossRefGoogle Scholar
  26. 26.
    T. Nagamiya, Soc. Chim. Phys., Compt. Rend. Reunion Ann. Comm. Thermodynam. Union Intern. Phys.:Paris), 251 (1952).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Malcolm Nicol
    • 1
  • Jane R. Kessler
    • 1
  • Yukiko Ebisuzaki
    • 1
  • William D. Ellenson
    • 1
  • Mei Fong
    • 1
  • C. Sherman Gratch
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations