De-Excitation of Sulphur L-Shell Vacancies Produced in Ion-Atom Collisions in Solids

  • C. P. Bhalla


The inherent difficulties in obtaining relative populations of electronic defect configurations (and charge states) are presented for a 100 keV sulphur projectile traversing through a solid. It is concluded that this type of information cannot be deduced, as yet, from x-ray spectra of sulphur projectiles. Theoretical transition energies, transition rates and fluorescence yields are presented for sulphur with single 2p and multiple M vacancies.


Fluorescence Yield Charge State Distribution Defect Configuration Multiplet State Extinction Distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. W. Saris in Physics of Electronic and Atomic Collisions VII ICPEAC, (North-Holland Publishing Company, Amsterdam, 1972) 181. This paper contains an excellent review of the subject.Google Scholar
  2. [2]
    Inner-Shell Ionization Phenomena and Future Applications, edited by R. W. Fink, S. T. Manson, I. M. Palms and P. Venugopala Rao, U. S. ATomic Energy Commission Report No. CONF-720404 (1973). See invited papers by W. Brandt, T. M. Kavanagh, E. Merzbacher, D. I. Nagle, P. Richard and F. W. Saris. There are also many contributed papers in this report.Google Scholar
  3. [3]
    Heavy-Ion Summer Study, edited by S. T. Thornton, U. S. Atomic Energy Commission Report No. CONF-720669 (1973). See papers by P. Richard and E. Merzbacher.Google Scholar
  4. [4]
    W. Brandt in Atomic Physics 3, edited by S. S. Smith, G. K. Walters and L. M. Volsky (Plenum Press, 1973) 155.CrossRefGoogle Scholar
  5. [5]
    J. D. Garcia, R. J. Fortner and T. M. Kavanagh, Rev. Mod. Phys. 45, 111 (1973).ADSCrossRefGoogle Scholar
  6. [6]
    Q. C. Kessel and B. Fastrup, Case Studies in Atomic Physics 3, 137 (1973)(North-Holland Publishing Company, 1973).Google Scholar
  7. [7]
    Sheldon Datz, invited talk, American Physical Society Meeting, Washington, D. C. (1973).Google Scholar
  8. [8]
    R. J. Fortner, T. M. Kavanagh and R. C. Der, Bull. Am. Phys. Soc. 18, 662 (1973).Google Scholar
  9. [9]
    Hans-Dieter Betz, Rev. Mod. Physics 44, 465 (1972). Also see Ref. [3].ADSCrossRefGoogle Scholar
  10. [10]
    M. E. Rudd in Ref. [1].Google Scholar
  11. [11]
    N. Stolterfoht, Eighth Int. Conf. on the Physics of Electronic and Atomic Collisions — VIII ICPEAC Abstracts (1973).Google Scholar
  12. [12]
    D. Burch, W. B. Ingalls, J. S. Risley and R. H. Heffner, Phys. Rev. Lett. 29, 1719 (1973).ADSCrossRefGoogle Scholar
  13. [13]
    A. R. Knudson, D. J. Nagel, P. G. Burkhalter and K. L. Dunning, Phys. Rev. Lett. 26, 1149. Also see Ref. [2].Google Scholar
  14. [14]
    P. Richard, W. Hodge and C. Fred Moore, Phys. Rev. Lett. 29, 393 (1972).ADSCrossRefGoogle Scholar
  15. [15]
    C. P. Bhalla and D. L.Walters, Ref. [2].Google Scholar
  16. [16]
    C. P. Bhalla and M. Hein, Phys. Rev. Lett. 30, 39 (1973).ADSCrossRefGoogle Scholar
  17. [17]
    C. P. Bhalla, N. O. Folland and M. Hein, Phys. Rev. A 8, 649 (1973).ADSCrossRefGoogle Scholar
  18. [18]
    C. P. Bhalla, Phys. Lett. A (in press)(1973); Phys. Rev. A 8, 2877 (1973).ADSCrossRefGoogle Scholar
  19. [19]
    F. Hopkins, D. O. Elliott, C. P. Bhalla and P. Richard, Phys. Rev. A 8, 2952 (1973).ADSCrossRefGoogle Scholar
  20. [20]
    J. C. Slater, Quantum Theory of Atomic Structure, Vol. I, II (McGraw-Hill Book Company, New York 1960).Google Scholar
  21. [21]
    F. Herman and S. Skillmann, Atomic Structure Calculations (Prentice Hall, Inc., Englewood Cliffs, N. J. 1963).Google Scholar
  22. [22]
    F. Herman and K. Schwarz in Computational Solid State Physics (Plenum Press, New York, 1972).CrossRefGoogle Scholar
  23. [23]
    D. L. Walters and C. P. Bhalla, Phys. Rev. A 3, 1919 (1971).ADSCrossRefGoogle Scholar
  24. [24]
    C. P. Bhalla, Physics Lett. 46A, 185 (1973).ADSCrossRefGoogle Scholar
  25. [25]
    P. Dahl et., Electronic and Atomic Collisions, VIII ICPEAC Abstracts (1973) 708.Google Scholar
  26. [26]
    F. W. Saris, W. F. van der Weg, H. Tawara and R. Laubert, Phys. Rev. Lett. 28, 717 (1972); see F. W. Saris et al. in Ref. [2].ADSCrossRefGoogle Scholar
  27. [27]
    F. W. Saris, Proceedings of this Conference (1973).Google Scholar
  28. [28]
    The definition given in eq. (11) is not correct. The fluorescence yield, averaged over the spectroscopic terms designated by L and S with a statistical population (2L + 1)(2S +1), is as follows: The multiplet fluorescence yield, ω(L,S), is the ratio of the total x-ray rate and the total decay rate for the particular state specified by L and S. The numerical results of <ω> differ significantly from the ω2p-values in tables 4 and 5. These considerations do not change the values of average extinction distances and the general arguments and conclusions presented here.Google Scholar
  29. [29]
    C. P. Bhalla, D. L. Matthews and C. F. Moore, Phys. Lett. 46A, 336 (1973).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • C. P. Bhalla
    • 1
    • 2
  1. 1.FOM-Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands
  2. 2.Department of PhysicsKansas State UniversityManhattanUSA

Personalised recommendations