An Investigation of the Processes Involved in the Production of Non-Characteristic X Rays During Ion Bombardment of Solid Targets

  • J. A. Cairns
  • A. D. Marwick
  • P. J. Chandler
  • J. S. Briggs


This work can be subdivided into two main areas. First, it examines the role played by the projectile in generating both characteristic and non-characteristic x rays during argon ion bombardment of silicon and silicon carbide. This involves an investigation of the effect of projectile build-up in these targets, and some high resolution spectral examination of the ArL x rays. It emerges that Ar → Si collisions are mainly responsible for the non-characteristic x rays; the dominant mechanism at the energy investigated is a double scattering process, although recoils also play a role in the Ar → Si system. Second, the differential cross-sections for non-characteristic x ray produced during C → C collisions have been measured over the energy range 40 → 280 keV. This work demonstrates a gradual levelling off of these cross sections and also highlights the appearance of x rays having energy greater than the united atom limit, arising from a collision broadening effect.


Silicon Carbide Proportional Counter Projectile Energy Unite Atom Limit Projectile Energy Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. W. Saris, W. F. van der Weg, H. Tawara, Phys. Rev. Lett. 28, 717 (1972).ADSCrossRefGoogle Scholar
  2. [2]
    F. W. Saris, I. V. Mitchell, D. C. Santry, J. A. Davies, R. Laubert, Proc. International Conference on Inner Shell Ionization Phenomena, Atlanta (USAEC Conf.-720404 (4 vols.)) 1972.Google Scholar
  3. [3]
    P. H. Mokier, H. J. Stein, P. Armbruster, Phys. Rev. Lett. 29, 827 (1972).ADSCrossRefGoogle Scholar
  4. [4]
    J. R. MacDonald, M. D. Brown, Phys. Rev. Lett. 29 (1972).Google Scholar
  5. [5]
    J. R. MacDonald, M. D. Brown, T. Chiao, Phys. Rev. Lett. 30., 471 (1973).ADSCrossRefGoogle Scholar
  6. [6]
    U. Fano and W. Lichten, Phys. Rev. Lett. 14, 628 (1965).ADSCrossRefGoogle Scholar
  7. [7]
    W. Lichten, Phys. Rev. 164, 131 (1967).ADSCrossRefGoogle Scholar
  8. [8]
    M. Barat, W. Lichten, Phys. Rev. A 6, 211 (1972).ADSCrossRefGoogle Scholar
  9. [9]
    J. Macek, J. A. Cairns, J. S. Briggs, Phys. Rev. Lett. 28, 1298 (1972).ADSCrossRefGoogle Scholar
  10. [10]
    K. Taulbjerg, B. Fastrup, E. Laegsgaard, Phys. Rev. 8, 1814 (1973).ADSCrossRefGoogle Scholar
  11. [11]
    J. A. Cairns, C. L. Desborough, D. F. Holloway, Nucl. Instr. Meth. 88, 239 (1970).CrossRefGoogle Scholar
  12. [12]
    M. Steadman, J. A. Cairns, A. D. Marwick (in preparation).Google Scholar
  13. [13]
    J. A. Cairns, D. F. Holloway, G. F. Snelling, Nucl. Instr. Meth. 111, 419 (1973).CrossRefGoogle Scholar
  14. [14]
    K. Kandiah, Nucl. Instr. Meth. 95, 289 (1971).CrossRefGoogle Scholar
  15. [15]
    J. A. Cairns, A. D. Marwick, I. V. Mitchell, presented at the International Conference on Ion Beam Surface Layer Analysis (IBM Research, N.Y., June 1973);Google Scholar
  16. [15]
    J. A. Cairns, A. D. Marwick, I. V. Mitchell, Thin Solid Films 19, 91 (1973).ADSCrossRefGoogle Scholar
  17. [16]
    B. Fastrup, G. Hermann, K. J. Smith, Phys. Rev. A 3, 1591 (1971).ADSCrossRefGoogle Scholar
  18. [17]
    J. S. Briggs, J. Phys. B 7, 47 (1974).ADSCrossRefGoogle Scholar
  19. [18]
    J. M. Khan, D. L. Potter, R. D. Worley, Phys. Rev. A 139, 1735 (1965).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • J. A. Cairns
    • 1
  • A. D. Marwick
    • 1
  • P. J. Chandler
    • 1
  • J. S. Briggs
    • 1
  1. 1.AERE HarwellDidcot, BerkshireEngland

Personalised recommendations