Radiation Damage in Transition Metal Hexahalo Complexes: The Application of Atomic Collision Dynamics in Hot Atom Chemistry

  • K. Rössler
  • M. T. Robinson


In transition metal hexahalo complexes K2[MeX6], the chemical consequences of “hot” atom reactions can be observed in relatively simple systems. The primary recoils, generated by nuclear reactions or implanted as radioactive ions, can be studied by radiochemical methods. The halogen recoils may appear either as free halide *X- or as labeled complex anion [MeX5*X]2-. The hot atom chemistry of these systems can be accounted for in largely solid state physical terms, using computer simulation techniques. In general, excellent agreement between the experimental data and the model calculations can be obtained using reasonable model parameters. This agreement shows that the product distribution in these systems is controlled by atomic collision dynamics and simple reactions of a well-defined number of simple defects.


Close Pair Direct Replacement Atom Recoil Displacement Threshold Primary Retention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Stöcklin, Chemie heisser Atome, (“Chemische Taschenbücher,” Bd. 6, Verlag Chemie, Weinheim/Bergstr., Germany, 1969);Google Scholar
  2. [1a]
    G. Stöcklin, “Chimie des atomes chauds” (Masson et Cie, Paris, 1972).Google Scholar
  3. [2]
    R. Bell, K. Rössler, G. Stöcklin, and S. R. Upadhyay, Jülich Report Jül-625-RC (1969).Google Scholar
  4. [3]
    R. Bell, K. Rössler, G. Stöcklin, and S. R. Upadhyay, J. Inorg. Nucl. Chem. 34, 461 (1972).CrossRefGoogle Scholar
  5. [4]
    R. Bell and G. Stöcklin, Radiochim. Acta 13, 57 (1970).Google Scholar
  6. [5]
    K. Rössler, J. Otterbach, and G. Stöcklin, J. Phys. Chem. 76, 2499 (1972).CrossRefGoogle Scholar
  7. [6]
    J. Otterbach, Jülich Report Jül–832-RC (1972).Google Scholar
  8. [7]
    M. T. Robinson, K. Rössler, and I. M. Torrens, J. Chem. Phys. 60, 680 (1974).ADSCrossRefGoogle Scholar
  9. [8]
    I. M. Torrens and M. T. Robinson, “Radiation Induced Voids in Metals,” edited by J. W. Corbett and L. C. Ianiello (U.S.A.E.C. publication CONF-710601, 1972), 739;Google Scholar
  10. [8a]
    I. M. Torrens and M. T. Robinson, “Interatomic Potentials and Simulation of Lattice Defects,” edited by P. C. Gehlen, J. R. Beeler, Jr., and R. I. Jaffee (Plenum, New York, 1972), 423;CrossRefGoogle Scholar
  11. [8b]
    M. T. Robinson and I. M. Torrens, Phys. Rev. B 9 (1974), in press.Google Scholar
  12. [9]
    M. T. Robinson, “Radiation Induced Voids in Metals,” edited by J. W. Corbett and L. C. Ianiello (U.S.A.E.C. publication CONF-710601, 1972), 397.Google Scholar
  13. [10]
    W. F. Libby, J. Am. Chem. Soc. 69, 2523 (1947).CrossRefGoogle Scholar
  14. [11]
    P. H. Dederichs, C. Lehmann, and H. Wegener, Phys. Stat. Solidi 8, 213 (1965).ADSCrossRefGoogle Scholar
  15. [12]
    W. J. van Ooij, Thesis, Technische Hogeschool Delft (1971).Google Scholar
  16. [13]
    W. Herr, K. Heine, and G. B. Schmidt, Z. Naturforsch. 17a, 590 (1962).ADSGoogle Scholar
  17. [14]
    L. Pauling, “The Nature of the Chemical Bond” (Cornell Univ. Press, Ithaca, N. Y., 1960), p. 514.Google Scholar
  18. [15]
    H. J. Wollenberger, “Vacancies and Interstitials in Metals,” edited by A. Seeger, D. Schumacher, W. Schilling, and J. Diehl (North-Holland Publ. Co., Amsterdam, 1970), p. 215.Google Scholar
  19. [16]
    G. B. Schmidt and W. Herr, “Chemical Effects of Nuclear Transformations,” (IAEA, Vienna, 1961) Vol. 1, p. 525.Google Scholar
  20. [17]
    H. Müller and D. Cramer, Radiochim. Acta, 14, 78 (1970).Google Scholar
  21. [18]
    H. Müller, J. Inorg. Nucl. Chem. 27, 1745 (1965).CrossRefGoogle Scholar
  22. [19]
    W. Herr, Z. Elektrochem. 56, 911 (1952).Google Scholar
  23. [20]
    G. K. Schweitzer and D. L. Wilhelm, J. Inorg. Nucl. Chem. 3, 1 (1956).CrossRefGoogle Scholar
  24. [21]
    D. J. Apers and A. G. Maddock, Trans. Faraday Soc. 56, 498 (1960).CrossRefGoogle Scholar
  25. [22]
    K. Rossler, to be published.Google Scholar
  26. [23]
    H. Müller, Naturwissensch. 49, 182 (1962).ADSCrossRefGoogle Scholar
  27. [24]
    H. Müller, “Chemical Effects of Nuclear Transformations,” (IAEA, Vienna, 1965) Vol. 2, p. 359.Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • K. Rössler
    • 1
  • M. T. Robinson
    • 2
  1. 1.Institut für NuklearchemieKernforschungsanlage Jülich GmbHJülichGermany
  2. 2.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations