The Z1 Oscillations in Electronic Stopping

  • J. S. Briggs
  • A. P. Pathak


An expression for the energy loss cross-section of a particle of mass m1 and velocity v 1 colliding with particles of mass m2 having a distribution of velocities v 2 is obtained. The energy loss cross-section is proportional to the momentum transfer cross-section which depends upon the elastic scattering intensity in the target-projectile center-of-mass system. When applied to the scattering of electrons by incident atoms moving at velocities v1 ~ v2 the momentum transfer cross-section shows strong oscillations with Z1 in the same regions as those observed in the electronic stopping power. These oscillations are connected with the shell structure of the periodic table by an analysis of the phase shift induced in the electron wavefunctions of different angular momentum. By considering the Coulomb scattering from a bare incident particle, the connection with other theories of stopping, when v1 « v2 and v1 » v2 respectively, is established.


Phase Shift Bare Incident Coulomb Scattering Target Electron Bare Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. H. Ormrod, J. R. MacDonald and H. E. Duckworth, Can. J. Phys. 43, 275 (1965);ADSCrossRefGoogle Scholar
  2. [1a]
    B. Fastrup, P. Hvelplund and C. A. Sautter, Mat. Fys. Medd. Dansk. Vid. Selsk. 35, No. 10 (1966);Google Scholar
  3. [1b]
    L. Eriksson, J. A. Davies and P. Jespersgaard, Phys. Rev. 161, 219 (1967);ADSCrossRefGoogle Scholar
  4. [1c]
    F. H. Eisen, Can. J. Phys. 46, 561 (1968).ADSCrossRefGoogle Scholar
  5. [2]
    I. M. Cheshire, G. Dearnaley and J. M. Poate, Phys. Letters 27A, 304 (1968)ADSGoogle Scholar
  6. [2a]
    I. M. Cheshire, G. Dearnaley and J. M. Poate Proc. Roy. Soc. A311, 47 (1969) and Atomic Collision Phenomena in Solids (North Holland 1970) p. 351.ADSGoogle Scholar
  7. [3]
    O. B. Firsov, Soviet Physics J.E.T.P. 9, 1076 (1959).ADSGoogle Scholar
  8. [4]
    J. S. Briggs and A. P. Pathak, J. Phys. C. (Solid State Physics) 6, L153 (1973).ADSCrossRefGoogle Scholar
  9. [5]
    E. Gerjuoy, Phys. Rev. 148, 54 (1966).ADSCrossRefGoogle Scholar
  10. [6]
    E. Geltman, Topics in Atomic Collision Theory, p. 20 (Academic Press, New York) 1969.Google Scholar
  11. [7]
    A. Burgess, Proc. Phys. Soc. 81, 442 (1963).ADSCrossRefGoogle Scholar
  12. [8]
    P. M. Morse, Rev. Mod. Phys. 4, 577 (1932).ADSMATHCrossRefGoogle Scholar
  13. [9]
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nonrelativ-istic Theory), 1965 (Pergamon, Oxford) p. 257.MATHGoogle Scholar
  14. [10]
    S. T. Manson, Phys. Rev. 182, 97 (1969).ADSCrossRefGoogle Scholar
  15. [11]
    E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • J. S. Briggs
    • 1
  • A. P. Pathak
    • 1
  1. 1.Theoretical Physics DivisionA.E.R.E. HarwellDidcot, BerkshireEngland

Personalised recommendations