Advertisement

Effects of Lattice Defects on Dechanneling and on Channeled-Particle Distribution

  • Noriaki Matsunami
  • Noriaki Itoh

Abstract

The diffusion equation was applied to obtain the dechanneling caused by lattice defects in Si. It is shown that the predominant effect of defects on dechanneling for large surface concentration or large depth is the modification of the particle distribution in transverse energy and enhancement of dechanneling by lattice vibrations and electronic collisions. It is pointed out that this effect modifies considerably the depth profile of lattice defects extracted from back-scattering experiments.

Keywords

Diffusion Model Diffusion Equation Depth Profile Lattice Defect Lattice Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Davies, J. Denhartog, L. Eriksson, and J. W. Mayer, Canadian J. Phys. 45, 4053 (1967).ADSCrossRefGoogle Scholar
  2. [2]
    J. W. Mayer, L. Eriksson, S. T. Picraux and J. A. Davies, Canadian J. Phys. 46, 663 (1963).ADSCrossRefGoogle Scholar
  3. [3]
    E. Bøgh, Canadian J. Phys. 46, 663 (1968).CrossRefGoogle Scholar
  4. [4]
    L. C. Feldman and J. W. Rodgers, J. Appl. Phys. 41, 3776 (1970).ADSCrossRefGoogle Scholar
  5. [5]
    F. H. Eisen, B. Welch, J. E. Westmoreland and J. W. Mayer, Atomic Collision Phenomena in Solids (North-Holl and, Amsterdam, 1970) p. 111.Google Scholar
  6. [6]
    J. M. Ziegler, J. Appl. Phys. 43, 2973 (1972).ADSCrossRefGoogle Scholar
  7. [7]
    K. Schmid, Radiation Effects 17, 201 (1973).CrossRefGoogle Scholar
  8. [8]
    N. Matsunami and N. Itoh, Phys. Letters 45, 435 (1973).ADSCrossRefGoogle Scholar
  9. [9]
    J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 34, No. 14 (1965).Google Scholar
  10. [10]
    E. Bonderup, H. Esbensen, J. U. Andersen and H. E. Schiøtt, Radiation Effects 12, 261 (1972).CrossRefGoogle Scholar
  11. [11]
    J. U. Andersen, I. Aadreasen, J. A. Davies and E. Uggerhøj, Radiation Effects 7, 25 (1971).ADSCrossRefGoogle Scholar
  12. [12]
    D. Van Vliet, Radiation Effects 10, 137 (1971).ADSCrossRefGoogle Scholar
  13. [13]
    N. Matsunami, to be published.Google Scholar
  14. [14]
    D. K. Brice, Appl. Phys. Letters 16, 103 (1970).ADSCrossRefGoogle Scholar
  15. [15]
    T. Tsurushima and H. Tanoue, J. Phys. Soc. Japan 31, 1695 (1971).ADSCrossRefGoogle Scholar
  16. [16]
    H. J. Stein, F. L. Vook and J. A. Borders, Appl. Phys. Letters 16, 106 (1971).ADSCrossRefGoogle Scholar
  17. [17]
    K. L. Brower, F. L. Vook and J. A. Borders, Appl. Phys. Letters 16, 108 (1970).ADSCrossRefGoogle Scholar
  18. [18]
    K. Morita and N. Itoh, J. Phys. Soc. Japan 30, 1430 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Noriaki Matsunami
    • 1
  • Noriaki Itoh
    • 1
  1. 1.Department of Nuclear EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations