Microsporidia in Invertebrates: Host-Parasite Relations at the Organismal Level

  • Jaroslav Weiser
Part of the Comparative Pathobiology book series (CPATH, volume 1)


In studies on the relationship of the microsporidia to their invertebrate hosts, the identification of the individual species is of primary importance. This exercise, however, is becoming increasingly difficult in view of the growing number of microsporidia isolated from new hosts and the limited number of diagnostic factors for species identification. According to a recent world census, the number of invertebrate species is estimated to be nearly one million. My experience in distribution of microsporidia of invertebrate hosts indicates that there may be a microsporidian in every living invertebrate. If only one per cent were new species, there would be as many as 10,000 species to distinguish. Obviously, it would be a monumental task to distinguish this large number. Therefore, the extreme care is necessary to record all characteristics.


Infected Tissue Vegetative Stage Malpighian Tubule Silk Gland Polar Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H. W. 1954. Nosema disease of Gnorimoschema operculella Zeller and Macrooentrus anoylivorus Rohw. Annals Entomol. Sox. Amer. 47, 407–424.Google Scholar
  2. Astaurov, B. L., Ovanesjan, T. G. and Lobshanidze, V. I. 1952. Desinfection of pebrinous eggs of the silkworm by short treatment with hot water. Dokl. VASCHNIL. 3, 44–51.Google Scholar
  3. Bednjakova, T. A. and Verenskaja, V. N. 1958. Sterilizing action of high temperatures on infections of the silkworm, Bombyx mori L., with Nosema bombycis Naeg. during the different stages of diapause. Doklady Akad. Nauk SSSR. 122, 737–740.Google Scholar
  4. Blunck, H. 1952. Ueber die in Pieris brassioae L., ihren Parasiten und Hyperparasiten schmarotzende Mikrosporidien. Trans. 9th, Int. Congress of Entomol., Amsterdam 1951, pp. 432–438.Google Scholar
  5. Brooks, W. M. 1971. The inflammatory response of the tobacco hornworm, Manduoa sexta, to infection by the microsporidian Nosema sphingidis. J. Invertebr. Pathol. 17, 87–93.CrossRefGoogle Scholar
  6. Bulnheim, H. P. 1971. Entwicklung, Uebertrangung und Parasit-Wirt Beziehungen von Thelohania herediteria sp. n.. Z. Parasitenk. 35, 241–262.Google Scholar
  7. Bulnheim, H. P. and Vâvra, J. 1968. Infection by the microsporidian Ootosporea effeminans sp. n., and its sex determining influence in the amphipod Gammarus duebeni. J. Parasitol. 54, 241–248.PubMedCrossRefGoogle Scholar
  8. Chatton, E. 1920. Sur un complexe xéno-parasitaire morphologique et physiologique, Neresheimeria oatenata chez Fritillaria pelluoida. C. R. Acad. Soie., France 171, 55–57.Google Scholar
  9. Debaisieux, P. 1919. Microsporidies parasites des larves de Simulium: Thelohania varions. La Cellule 30, 47–79.Google Scholar
  10. Debaisieux, P. 1919a. Hypertrophie des cellules animales parasités par des Cnidosporidies. C. R. Soc. Biol. 82, 867–869.Google Scholar
  11. Debaisieux, P. 1920. Etudes sur les Microsporidies. IV. Glugea anomala Moniez. La Cellule 30, 217–243.Google Scholar
  12. Fisher, F. M. and Sanborn, R. C. 1964. Nosema as a source of juvenile hormone in parasitized insects. Biol. Bull. 126, 235–252.CrossRefGoogle Scholar
  13. Fowler, J. L. and Reeves, E. L. 1974a. Detection of relationships among microsporidian isolates. Hydrophobic extracts. J. Invertebr. Pathol. 23, 3–12.PubMedCrossRefGoogle Scholar
  14. Fowler, J. L. and Reeves, E. L. 1974b. Detection of relationships among microsporidian isolates by electrophoretic analysis: Hydrophilic extracts. J. Invertebr. Pathol. 23, 63–69.PubMedCrossRefGoogle Scholar
  15. Günther, S. 1959. Ueber die Auswirkung auf die Infektiosität bei der Passage insektenpathogener Mikrosporidien durch den Darm von Vögeln und Insekten. Nachrichtenbl. f. d. Deutseh. Pflanzenschutzd. 13, 19–21.Google Scholar
  16. Hazard, E. I. and Anthony, W. D. 1974. A redescription of the genus Parathelohania Codreanu 1966 Microsporidia: Protozoa with a reexamination of previously described species of Thelohania Henneguy 1892 and descriptions of two new species of Parathelohania from anopheline mosquitoes. USDA Techn. Bull. 1505, 26 pp.Google Scholar
  17. Hazard, E. I. and Weiser, J. 1968. Spores of Thelohania in adult female Anopheles: development and transovarial transmission and redescriptions of T. legeri Hesse and T. obesa Kudo. J. Protozool. 15, 817–823.PubMedCrossRefGoogle Scholar
  18. Henry, J. E. 1967. Nosema acridophagus sp. n., a microsporidian isolated from grasshoppers. J. Invertebr. Pathol. 9, 331–341.CrossRefGoogle Scholar
  19. Hostounsky, Z. 1963. Pieris brassicae, its continual rearing and transmission of its infections with parasites. Ph.D Dissert., Czech.Google Scholar
  20. Hostounsky, Z. and Weiser, J. 1972. Production of spores of Nosema plodiae Kellen and Lindegren in Mamestra brassicae L. after different infective dosage. I. Vest. Cs. spol. zool. 36, 97–100.Google Scholar
  21. Hostounsky, Z. and Weiser, J. 1973. Production of spores of Nosema plodiae in Mamestra brassicae after different dosage, II. Vest. Cs. spol. zool. 37, 234–237.Google Scholar
  22. Issi, I. V. and Lipa, J. 1968. Gurleya sokolovi sp. n., a microsporidian parasite of the water mite Limnochares aquatica L. Acarina:Hydrachnellae, and a note on a gregarine infection in the same mite. J. Invertebr. Pathol. 10, 165–175.CrossRefGoogle Scholar
  23. Issi, I. V. and Maslennikova V. A. 1964. The effect of microsporidiosis upon the diapause and survival of Apanteles glomeratus L. and Pieris brassicae L. Entomologiceskoe obozrenie 43, 112–117.Google Scholar
  24. Issi, I. V. and Chervinskaja, V. P. 1969. On the influence of temperature on the development of Nosema mesnili and Plistophora schubergi (Microsporidia, Nosematidae). Zoolog, zhurnal 48, 1140–1146.Google Scholar
  25. Kaya, H. K. 1973. Pathogenicity of Pleistophora schubergi to larvae of the orange-striped oakworm and other lepidopterous insects. J. Invertebr. Pathol. 22, 356–358.CrossRefGoogle Scholar
  26. Kälalovä, S. and Weiser, J. 1973. Identification of microsporidia by indirect fluorescent antibody tests. Abst. V. Int. Conf. Insect Pathol. 5th, Oxford p. 111.Google Scholar
  27. Karmo, E. and Morgenthaler, O. 1939. The development of Nosema apis at various temperatures. Bee World, 20, 57–58.Google Scholar
  28. Kellen, W. R., Clark, T. B., Lindegren, J, E. and Sanders, R. D. 1966. Development of Thelohania californiea in two hybrid mosquitoes Expt. Parasitol. 18, 251–254.CrossRefGoogle Scholar
  29. Kellen, W. R. and Lindegren, J. E. 1968. Biology of Nosema plodiae sp. n., a microsporidian pathogen of the Indian meal moth Plodia interpunotella Hbn. Lepidoptera: Phycitidae. J. Invertebr. Pathol. 11, 104–111.PubMedCrossRefGoogle Scholar
  30. Kharazi-Pakdel, A. 1968. Recherches sur la pathogenie de Nosema melolonthae Krieg. Entomophaga, 13, 289–018.CrossRefGoogle Scholar
  31. Komärek, J. and Vâvra, J. 1968. In memoriam of Marssoniella Lemm. 1900. Arch. Protisterik., 111, 12–17.Google Scholar
  32. Kramer, J. P. 1965. Generation time of the microsporidian Octosporea muscaedomesticae Flu in adult Phormia regina Meig. (Diptera, Calliphoridae.) Z. Parasitenk. 25, 309–313.PubMedCrossRefGoogle Scholar
  33. Kucera, M. and Weiser, J. 1973a. Alanine aminotransferase, alkaline phosphatase and protease activity in Mamestra brassicae during microsporidian infection. J. Invertebr. Pathol. 21, 121–122.CrossRefGoogle Scholar
  34. Kucera, M. and Weiser, J. 1973b. Alanine aminotransferase in the three last larval instars of Barathra brassicae infected by Nosema plodiae. J. Invertebr. Pathol. 21, 287–292.CrossRefGoogle Scholar
  35. Kucera, M. and Weiser, J. 1974. Alkaline phosphatase in the last larval instar of Barathra ferassiaß/Lepidoptera/infected by Nosema plodia. Acta entomol. bohemoslov. 71, 289–293.Google Scholar
  36. Lewis, L. C. and Lynch, R. E. 1974. Lyophilization, vacuum drying and subsequent storage of Nosema pyraustae spores. J. Invertebr. Pathol. 24, 149–153.PubMedCrossRefGoogle Scholar
  37. Machay, M. L. 1957. Occurrence of Nosema bombyois Naegeli among wild Lepidoptera. Folia Entomol. Hungarioa 10, 359–363.Google Scholar
  38. Maddox, J. V. 1968. Generation time of the microsporidian Nosema necatrix in the larvae of the armyworm, Pseudaletia unipuncta. J. Invertebr. Pathol. 11, 90–96.CrossRefGoogle Scholar
  39. Hattes, O. 1927. Parasitäre Krankheiten der Mehlmottenlarven und Versuche über ihre Verwendbarkeit als biologischer Bekämpf-ungsmittel. Sitzber. Ges. Bedford, d. ges. Naturwiss. Marburg 62, 381–417.Google Scholar
  40. Maurand, J. 1973. Recherches biologiques sur les microsporidies des larves de simulies. Dissert, 200 pp, Montpellier University.Google Scholar
  41. Maurand, J. and Bouix, G. 1969. Mise en évidence d’un phénomene secretoire dans le cycle de Thêlohania fibrata Strickland 1913, microsporidie parasite des larves de Simulium. C. R. Acad. Soi., Paris 269, 2216–2218.Google Scholar
  42. Milner, R. J. 1972. Nosema whitei, a microsporidian pathogen of some species of Tribolium. III. Effect on T. castanewn. J. Invertebr. Pathol. 19, 248–255.CrossRefGoogle Scholar
  43. McNeil, J. N. and Brooks, W. M. 1974. Interactions of the hyper-parasitoids Catolacous aeneoviridis and Spilochalcis side with the microsporidians Nosema helithidis and N. campoletidis. Entomophaga 19, 195–204.CrossRefGoogle Scholar
  44. Nilova, G. N. 1967. Number of spores of two microsporidia in the caterpillars of Feltia segetwm. Vestnik selchoz. NaukiGoogle Scholar
  45. Nordin, G. L. and Maddox, J, V. 1972. Effects of simultaneous virus and microsporidian infections on larvae of Hyphantria ounea. J. Invertebr. Pathol. 20, 66–69.CrossRefGoogle Scholar
  46. Nordin, G. L. and Maddox, J. V. 1974. Microsporidia of the fall webworm, Hyphantria ounea. I. Identification, distribution, and comparison öf Nosema sp. with similar Nosema spp. from other Lepidoptera. J, Invertebr. Pathol. 24, 1–13.CrossRefGoogle Scholar
  47. Ohshima, K. 1973. Change of relation between infectivity and filament evagination of debilitated spores of Nosema bombyois. Annot. Zoolog. Japon. 4–6, 188–198.Google Scholar
  48. Paillot, A. 1918. Pirezia legeri nov. sp. microsporidie nouvelle, parasite des chenilles de Pieris brassioae. C. R. Soo. Biol. 81, 187–189.Google Scholar
  49. Payne, N. M. 1933. A parasitic hymenopteron as a vector of an insect disease. Entomol. News 44, 22.Google Scholar
  50. Smirnoff, W. A. 1973. Biochemical exploration in insect pathology. Current Topics in Compar. Pathobiol. 2, 89–106.Google Scholar
  51. Undeen, A. H. and Alger, N. E. 1975. The effect of the microsporidian, Nosema algerae on Anopheles stephensi. J. Invertebr. Pathol. 25, 19–24.PubMedCrossRefGoogle Scholar
  52. Undeen, A. H. and Maddox, J. V. 1973. The infection of nonmosquito hosts by injection with spores of the microsporidian Nosema algerae. J. Invertebr. Pathol. 22, 258–265.PubMedCrossRefGoogle Scholar
  53. Weiser, J. 1951. A contribution to the knowledge of the microsporidia of parasitic helminths. Fst. is. spol. zool. 15, 252–264.Google Scholar
  54. Weiser, J. 1953a. Parasiten der Raupen der Sonnenblumenmotte, Homesoma nebulellum Hbn. mit besonderer Rücksicht zur Art Mattesia povolnyi sp. n. Folia zool. et entomol. 15, 252–264.Google Scholar
  55. Weiser, J. 1953b. To the knowledge of the parasites of the fall webworm, Eyphantria ounea. Vest. cs. spol. zool. 16, 228.Google Scholar
  56. Weiser, J. 1953c. Schizogregarines of the flour pests. I. Vest. cs. spol. zool. 16, 199–212.Google Scholar
  57. Weiser, J. 1957. Mikrosporidien des Schwammspinners und der Goldafter. Zsohr. Angrew. Entomol. 40, 509–527.CrossRefGoogle Scholar
  58. Weiser, J. 1956. Studien über Mikrosporidien in Süsswasserinsekten. Csl. parasitologie 3, 193–202.Google Scholar
  59. Weiser, J. 1961. Die Mikrosporidien als Parasiten der Insekten. Beihefte zur Angewandten Entomologie, 149 pp, P. P. Parey, Hamburg.Google Scholar
  60. Weiser, J. 1965. Zwei Mikrosporidien aus Köcherfliegen Larven. Zool. Anzeiger 175, 229–234.Google Scholar
  61. Weiser, J. 1973. Transmission of microsporidia via injection. Proc. Int. Con f. Inseot Pathol. 4th Oxford3 p. 13.Google Scholar
  62. Weiser, J. 1976. The Pleistophora debaisieuxi xenoma. Z. Parasitenk. 48, 263–270.CrossRefGoogle Scholar
  63. Weiser, J. 1976. Responses of insects to injections of microsporidia. Vest. spot, zoot. In press.Google Scholar
  64. Weiser, J. and Coluzzi, M. 1972. Flistophora culisetae in different mosquito hosts. Folia paxasitol. 19, 197–202.Google Scholar
  65. Weiser, J. and Lysenko, O. 1972. Protein changes in the hemolymph of Galtevia mellonella infected with virus and protozoan pathogens. Acta entomol. bohemoslov. 6, 97–100.Google Scholar
  66. Weiser, J. and Veber, J. 1955. Ueber die Möglichkeiten des biologischen Kampfes gegen Hyphantria ounea. Csl. parasitol. 2, 191–199.Google Scholar
  67. Weiser, J. and Zizka, Z. 1976. Stages in the sporogony of Plistophora debaisieuxi Jirovec. Acta Protozoologiöa In press.Google Scholar
  68. Weissenberg, R. 1922. Mikrosporidien, Myxosporidien und Chlamydozoen als Zellparasiten von Fischen. Verh. Deutsch. Zool. Ges. 27, 41–43.Google Scholar
  69. Weissenberg, R. 1970. Some remarks upon the taxonomy of the genera Glugea and Nosema (Protozoa, Microsporidia). J. Parasitol. 56/4, Sec. II, Part I., 363–4, Abstr. 668.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Jaroslav Weiser
    • 1
  1. 1.Institute of Entomology Department of Insect PathologyCzechoslovak Academy of SciencesPrahaCzechoslovakia

Personalised recommendations