Advertisement

Conductors for Superconducting Electrical Machines

  • D. W. Deis
  • W. T. Reynolds
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 18)

Abstract

Development of the intrinsically stable multifilament conductor [1–5] was prompted by the desire to construct high-field (> 50 kG), pulsed superconducting magnets for research in high-energy physics. It was soon realized that this type of conductor was suitable for superconducting machinery, and at present development of this application of superconductivity is in progress in many countries. Development of superconducting ac machinery is aimed at ship propulsion, large central station turbogenerators, and high-power airborne generators. Such rotating machinery might well become the most important application of superconductivity.

Keywords

Critical Current Density Synchronous Machine Rotor Winding Ship Propulsion Westinghouse Research Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Chester, Rep. Prog. Phys., 30 (Part II): 561 (1967).CrossRefGoogle Scholar
  2. 2.
    M. N. Wilson, G. R. Walters, J. D. Lewis, and P. F. Smith, J. Physics D: Appl. Phys., 3: 1517 (1970).CrossRefGoogle Scholar
  3. 3.
    H. Hillmann, “Design and Properties of Intrinsically Stable Multistrand Superconductors,” paper presented at Third International Cryogenic Engineering Conference, Berlin, West Germany, May 25, 1970.Google Scholar
  4. 4.
    H. Hillmann, Z. angew. Physik, 30: 233 (1970).Google Scholar
  5. 5.
    P. R. Critchlow, E. Gregory, and B. Zeitlin, Cryogenics, 11(1): 3 (1971).Google Scholar
  6. 6.
    C. J. Mole, H. E. Haller III, and D. C. Litz, “Superconductor Synchronous Generators,” paper presented at 1972 Applied Superconductor Conference, Annapolis, Maryland, May 1, 1972.Google Scholar
  7. 7.
    D. Dew-Hughes, Rept. Prog. Phys., 34:821 (1971).Google Scholar
  8. 8.
    J. D. Livingston and H. W. Schadler, “The Effect of Metallurgical Variables on Superconducting Properties,” Progress in Materials Science, 12 (3): 183 (1964).Google Scholar
  9. 9.
    J. K. Hulm and R. D. Blaugher, Phys. Rev., 123:1569 (1961).Google Scholar
  10. 10.
    D. L. Grigsby, “Niobium Tin, Part I, Data Sheet DS-159,” Electronic Properties Information Center, July 1968, p. 66.Google Scholar
  11. 11.
    J. G. Kohr, T. W. Eager, and R. M. Rose, Met. Trans., 3: 1177 (1972).CrossRefGoogle Scholar
  12. 12.
    G. W. Webb, L. J. Vieland, R. E. Miller, and A. Wicklund, Solid State Comm., 9:1769 (1971).Google Scholar
  13. 13.
    G. F. Hardy and J. K. Hulm, Phys. Rev., 93 (2): 1004 (1954).CrossRefGoogle Scholar
  14. 14.
    K. Tachikawa and Y. Tanaka, Trans. Nat. Res. Inst. Metals, 9 (5): 283 (1967).Google Scholar
  15. 15.
    M. Suenaga and W. B. Sampson, Appl. Phys. Letters, 18:584 (1971).Google Scholar
  16. 16.
    H. Coffey, J. K. Hulm, W. T. Reynolds, D. K. Fox, and R. E. Span, J. App!. Phys., 36 (1): 128 (1965).CrossRefGoogle Scholar
  17. 17.
    D. L. Grigsby,“ Niobium Tin, Part I, Data Sheet DS-159, ” Electronic Properties Information Center, January 1968, pp. 54, 57, 72.Google Scholar
  18. 18.
    J. E. Kunsler, Rev. Mod. Phys., 33 (4): 501 (1961).CrossRefGoogle Scholar
  19. 20.
    P. R. Aron and G. W. Ahlgren, in: Advances in Cryogenic Engineering, Vol. 13, Springer Science+Business Media New York (1968), p. 21.Google Scholar
  20. 21.
    T. R. Haller and B. C. Belanger, IEEE Trans. Nuclear Sci., NS18:671 (1971).Google Scholar
  21. 22.
    T. G. Berlincourt and R. R. Hake, Phys. Rev. Letters, 9:7 (1962).Google Scholar
  22. 23.
    E. J. Saur, “Critical Fields and Critical Currents of High T r Superconductors,” paper presented at 1972 Applied Superconductivity Conference, Annapolis, Maryland, May 1, 1972.Google Scholar
  23. 24.
    S. Foner, E. J. McNiff, Jr., G. W. Webb, L. J. Vieland, R. E. Miller, and A. Wicklund, “Properties of Superconducting Nb3Ga Materials,” paper presented at 1972 Applied Superconductivity Conference, Annapolis, Maryland, May 1, 1972.Google Scholar
  24. 25.
    T. J. Greytak and J. H. Wernick, J. Phys. Chem. Solids, 25 (1): 535 (1964).CrossRefGoogle Scholar
  25. 27.
    M. Suenaga and W. B. Sampson, “Superconducting Properties of Multifilamentary V3Si Wires,” paper presented at 1972 Applied Superconductivity Conference, Annapolis, Maryland, May 1, 1972.Google Scholar
  26. 28.
    J. H. Wernick, in: Superconductors ( M. Tanebaum and M. V. Wright, editors), Interscience, New York (1962), p. 35.Google Scholar
  27. 29.
    M. Suenaga and W. B. Sampson, Metallurgy and Materials Science Division, Brookhaven National Laboratory, private communication.Google Scholar
  28. 30.
    C. J. Mole, T. J. Fagan, H. E. Haller III, D. C. Litz, and A. Patterson, in: Advances in Cryogenic Engineering, Vol. 18, Springer Science+Business Media New York (1973), p. 394.Google Scholar
  29. 31.
    M. N. Wilson, “Filamentary Composite Superconductors for Pulsed Magnets,” Rutherford Laboratory Preprint RPP/A89, paper presented at 1972 Applied Superconductivity Conference, Annapolis, Maryland, May 1, 1972.Google Scholar
  30. 32.
    W. T. Reynolds and R. M. Schrecengost, “Method of Producing Copper Clad Superconductors,” U. S. Patent 3,570,118, March 16, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • D. W. Deis
    • 1
  • W. T. Reynolds
    • 1
  1. 1.Westinghouse Research LaboratoriesPittsburghUSA

Personalised recommendations