Advertisement

Thermal Conductivity Measurements of Liquid and Dense Gaseous Methane

  • N. Mani
  • J. E. S. Venart
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 18)

Abstract

As part of a continuing program investigating the thermal conductivity of important industrial fluids, measurements were made on methane in the liquid and dense gaseous states. An absolute transient hot-wire apparatus [1] was used to obtain convection-free measurements at temperatures between 120 and 400 K at pressures from 25 to 700 bar. The maximum uncertainty in the results due to systematic and random errors in the apparatus and the measurement techniques was less than 1%. A gas-chromatographic analysis of methane samples revealed 99.33% methane, 0.56% nitrogen, 0.11% ethane, and traces of propane.

Keywords

Thermal Conductivity Blackbody radIatIOn Thermal Conductivity Measurement Density Correlation Parasitic Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Mani, Ph.D. Dissertation, University of Calgary, Calgary, Alberta, Canada (1971).Google Scholar
  2. 2.
    R. J. Goldstein and D. G. Briggs, Trans. ASME, J. Heat Transfer, 86: 490 (1964).CrossRefGoogle Scholar
  3. 3.
    V. A. Zagoruchenko and A. M. Zhuravlev, Thermophysical Properties of Gaseous and Liquid Methane (Translated from Russian), Israel Program for Scientific Translations, Jerusalem (1970). (Available from U. S. Dept. Commerce.)Google Scholar
  4. 4.
    H. Poltz, Mt. J. Heat Mass Transfer, 8 (4): 515 (1965).CrossRefGoogle Scholar
  5. 5.
    G. Schodel, Ph.D. Dissertation, University of Munich, Munich, West Germany (1969).Google Scholar
  6. 6.
    M. C. Jones, NBS Tech. Note 390, April 1970.Google Scholar
  7. 7.
    J. C. McLennan, R. C. Jacobsen, and J. O. Wilhelm, Trans. Roy. Soc. (Canada), 24: 37 (1930).Google Scholar
  8. 8.
    R. Tufeu, B. Le Neindre and P. Bury, in: Proceedings Eighth Conference on Thermal Conductivity, Springer Science+Business Media New York (1969), p. 229.Google Scholar
  9. 9.
    L. D. Ikenberry and S. A. Rice, J. Chem. Phys., 39: 1561 (1963).CrossRefGoogle Scholar
  10. 10.
    V. P. Sokolava and I. F. Golubev, Teploenergetika, 14: 91 (1967).Google Scholar
  11. 11.
    B. H. Rosenbaum and G. Thodos, Physica, 37: 442 (1967).CrossRefGoogle Scholar
  12. 12.
    A. Michels, J. V. Sengers, and P. S. van der Gulik, Physica, 28: 121–6 (1962).Google Scholar
  13. 13.
    H. M. Roder and D. E. Diller, J. Chem. Phys., 52 (11): 5928 (1970).CrossRefGoogle Scholar
  14. 14.
    J. E. S. Venart and N. Mani, Canadian J. Chem., 49 (14): 2468 (1971).CrossRefGoogle Scholar
  15. 15.
    H. J. M. Hanley, R. D. McCarty, and J. V. Sengers, J. Chem. Phys., 50 (2): 857 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • N. Mani
    • 1
  • J. E. S. Venart
    • 1
  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations